CRAN Package Check Results for Package FastRet

Last updated on 2025-12-19 14:50:20 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.1.4 17.00 181.57 198.57 ERROR
r-devel-linux-x86_64-debian-gcc 1.3.0 3.29 54.68 57.97 OK
r-devel-linux-x86_64-fedora-clang 1.3.0 8.00 126.55 134.55 OK
r-devel-linux-x86_64-fedora-gcc 1.3.0 125.68 OK
r-devel-windows-x86_64 1.3.0 7.00 101.00 108.00 OK
r-patched-linux-x86_64 1.1.4 17.22 171.71 188.93 ERROR
r-release-linux-x86_64 1.1.4 16.72 172.51 189.23 ERROR
r-release-macos-arm64 1.3.0 OK
r-release-macos-x86_64 1.3.0 3.00 76.00 79.00 OK
r-release-windows-x86_64 1.3.0 10.00 88.00 98.00 OK
r-oldrel-macos-arm64 1.3.0 1.00 26.00 27.00 OK
r-oldrel-macos-x86_64 1.3.0 3.00 86.00 89.00 OK
r-oldrel-windows-x86_64 1.3.0 12.00 106.00 118.00 OK

Check Details

Version: 1.1.4
Check: tests
Result: ERROR Running ‘testthat.R’ [38s/27s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(FastRet) > > test_check("FastRet") Starting 2 test processes. Saving _problems/test-train_frm-gbtree-11.R Saving _problems/test-fit_gbtree-8.R Saving _problems/test-fit_gbtree-16.R > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.25<1b>[0m Starting training of a lasso model > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.25<1b>[0m Mocking is enabled. Returning 'mockdata/lasso_model.rds' > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.40<1b>[0m Starting training of a lasso model > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.41<1b>[0m Mocking is enabled. Returning 'mockdata/lasso_model.rds' > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.41<1b>[0m Starting model Adjustment > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.41<1b>[0m dim(original_data): 442 x 126 > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.41<1b>[0m dim(new_data): 25 x 3 > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.53<1b>[0m predictors: 1, 2, 3, 4, 5, 6 > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.53<1b>[0m nfolds: 5 > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.53<1b>[0m Preprocessing data > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.54<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) + I(RT^3) + log(RT) + exp(RT) + sqrt(RT) > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.54<1b>[0m Estimating performance of adjusted model in CV > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.61<1b>[0m Fitting adjustment model on full new data set > test-plot_frm.R: <1b>[1;30m2025-12-08 17:21:11.61<1b>[0m Returning adjusted frm object > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.86<1b>[0m Starting model Adjustment > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.86<1b>[0m dim(original_data): 442 x 126 > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.86<1b>[0m dim(new_data): 25 x 3 > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.86<1b>[0m predictors: 1, 2 > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.86<1b>[0m nfolds: 5 > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.86<1b>[0m Preprocessing data > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.87<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.87<1b>[0m Estimating performance of adjusted model in CV > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.92<1b>[0m Fitting adjustment model on full new data set > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.92<1b>[0m Returning adjusted frm object > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.92<1b>[0m Starting model Adjustment > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.92<1b>[0m dim(original_data): 442 x 126 > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.92<1b>[0m dim(new_data): 25 x 3 > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.93<1b>[0m predictors: 1, 2, 3, 4, 5, 6 > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.93<1b>[0m nfolds: 5 > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.93<1b>[0m Preprocessing data > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.93<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) + I(RT^3) + log(RT) + exp(RT) + sqrt(RT) > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:11.93<1b>[0m Estimating performance of adjusted model in CV > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:12.00<1b>[0m Fitting adjustment model on full new data set > test-adjust_frm.R: <1b>[1;30m2025-12-08 17:21:12.00<1b>[0m Returning adjusted frm object > test-selective_measuring.R: <1b>[1;30m2025-12-08 17:21:12.31<1b>[0m Starting Selective Measuring > test-selective_measuring.R: <1b>[1;30m2025-12-08 17:21:12.31<1b>[0m Preprocessing input data > test-selective_measuring.R: <1b>[1;30m2025-12-08 17:21:12.32<1b>[0m Mocking is enabled for 'preprocess_data'. Returning 'mockdata/RPCD_prepro.rds'. > test-selective_measuring.R: <1b>[1;30m2025-12-08 17:21:12.32<1b>[0m Standardizing features > test-selective_measuring.R: <1b>[1;30m2025-12-08 17:21:12.33<1b>[0m Training Ridge Regression model > test-selective_measuring.R: <1b>[1;30m2025-12-08 17:21:12.33<1b>[0m Fitting Ridge model > test-selective_measuring.R: <1b>[1;30m2025-12-08 17:21:12.70<1b>[0m End training > test-selective_measuring.R: <1b>[1;30m2025-12-08 17:21:12.70<1b>[0m Scaling features by coefficients of Ridge Regression model > test-selective_measuring.R: <1b>[1;30m2025-12-08 17:21:12.71<1b>[0m Applying PAM clustering > test-selective_measuring.R: <1b>[1;30m2025-12-08 17:21:13.18<1b>[0m Returning clustering results [ FAIL 3 | WARN 5 | SKIP 0 | PASS 19 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-train_frm-gbtree.R:5:5'): train_frm works if `method == "GBTree"` ── <subscriptOutOfBoundsError/error/condition> Error in `FUN(X[[i]], ...)`: subscript out of bounds Backtrace: ▆ 1. └─FastRet::train_frm(...) at test-train_frm-gbtree.R:5:5 2. └─base::lapply(tmp, "[[", 2) ── Error ('test-fit_gbtree.R:8:5'): fit.gbtrees works as expected ────────────── Error in `begin_iteration:end_iteration`: argument of length 0 Backtrace: ▆ 1. └─FastRet:::fit_gbtree(df, verbose = 0) at test-fit_gbtree.R:8:5 2. └─FastRet:::fit_gbtree_grid(...) 3. └─xgboost::xgb.train(...) ── Error ('test-fit_gbtree.R:16:5'): fit.gbtrees works for data from reverse phase column ── Error in `begin_iteration:end_iteration`: argument of length 0 Backtrace: ▆ 1. └─FastRet:::fit_gbtree(df, verbose = 0) at test-fit_gbtree.R:16:5 2. └─FastRet:::fit_gbtree_grid(...) 3. └─xgboost::xgb.train(...) [ FAIL 3 | WARN 5 | SKIP 0 | PASS 19 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.1.4
Check: tests
Result: ERROR Running ‘testthat.R’ [36s/24s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(FastRet) > > test_check("FastRet") Starting 2 test processes. Saving _problems/test-train_frm-gbtree-11.R Saving _problems/test-fit_gbtree-8.R Saving _problems/test-fit_gbtree-16.R > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.03<1b>[0m Starting training of a lasso model > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.03<1b>[0m Mocking is enabled. Returning 'mockdata/lasso_model.rds' > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.25<1b>[0m Starting training of a lasso model > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.25<1b>[0m Mocking is enabled. Returning 'mockdata/lasso_model.rds' > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.25<1b>[0m Starting model Adjustment > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.25<1b>[0m dim(original_data): 442 x 126 > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.26<1b>[0m dim(new_data): 25 x 3 > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.36<1b>[0m predictors: 1, 2, 3, 4, 5, 6 > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.36<1b>[0m nfolds: 5 > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.36<1b>[0m Preprocessing data > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.37<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) + I(RT^3) + log(RT) + exp(RT) + sqrt(RT) > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.37<1b>[0m Estimating performance of adjusted model in CV > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.43<1b>[0m Fitting adjustment model on full new data set > test-plot_frm.R: <1b>[1;30m2025-12-17 05:44:00.43<1b>[0m Returning adjusted frm object > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.68<1b>[0m Starting model Adjustment > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.68<1b>[0m dim(original_data): 442 x 126 > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.68<1b>[0m dim(new_data): 25 x 3 > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.68<1b>[0m predictors: 1, 2 > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.68<1b>[0m nfolds: 5 > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.68<1b>[0m Preprocessing data > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.69<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.69<1b>[0m Estimating performance of adjusted model in CV > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.74<1b>[0m Fitting adjustment model on full new data set > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.74<1b>[0m Returning adjusted frm object > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.74<1b>[0m Starting model Adjustment > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.74<1b>[0m dim(original_data): 442 x 126 > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.74<1b>[0m dim(new_data): 25 x 3 > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.74<1b>[0m predictors: 1, 2, 3, 4, 5, 6 > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.74<1b>[0m nfolds: 5 > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.74<1b>[0m Preprocessing data > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.75<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) + I(RT^3) + log(RT) + exp(RT) + sqrt(RT) > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.75<1b>[0m Estimating performance of adjusted model in CV > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.81<1b>[0m Fitting adjustment model on full new data set > test-adjust_frm.R: <1b>[1;30m2025-12-17 05:44:00.81<1b>[0m Returning adjusted frm object > test-selective_measuring.R: <1b>[1;30m2025-12-17 05:44:01.16<1b>[0m Starting Selective Measuring > test-selective_measuring.R: <1b>[1;30m2025-12-17 05:44:01.16<1b>[0m Preprocessing input data > test-selective_measuring.R: <1b>[1;30m2025-12-17 05:44:01.16<1b>[0m Mocking is enabled for 'preprocess_data'. Returning 'mockdata/RPCD_prepro.rds'. > test-selective_measuring.R: <1b>[1;30m2025-12-17 05:44:01.17<1b>[0m Standardizing features > test-selective_measuring.R: <1b>[1;30m2025-12-17 05:44:01.17<1b>[0m Training Ridge Regression model > test-selective_measuring.R: <1b>[1;30m2025-12-17 05:44:01.18<1b>[0m Fitting Ridge model > test-selective_measuring.R: <1b>[1;30m2025-12-17 05:44:01.53<1b>[0m End training > test-selective_measuring.R: <1b>[1;30m2025-12-17 05:44:01.53<1b>[0m Scaling features by coefficients of Ridge Regression model > test-selective_measuring.R: <1b>[1;30m2025-12-17 05:44:01.54<1b>[0m Applying PAM clustering > test-selective_measuring.R: <1b>[1;30m2025-12-17 05:44:02.01<1b>[0m Returning clustering results [ FAIL 3 | WARN 5 | SKIP 0 | PASS 19 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-train_frm-gbtree.R:5:5'): train_frm works if `method == "GBTree"` ── <subscriptOutOfBoundsError/error/condition> Error in `FUN(X[[i]], ...)`: subscript out of bounds Backtrace: ▆ 1. └─FastRet::train_frm(...) at test-train_frm-gbtree.R:5:5 2. └─base::lapply(tmp, "[[", 2) ── Error ('test-fit_gbtree.R:8:5'): fit.gbtrees works as expected ────────────── Error in `begin_iteration:end_iteration`: argument of length 0 Backtrace: ▆ 1. └─FastRet:::fit_gbtree(df, verbose = 0) at test-fit_gbtree.R:8:5 2. └─FastRet:::fit_gbtree_grid(...) 3. └─xgboost::xgb.train(...) ── Error ('test-fit_gbtree.R:16:5'): fit.gbtrees works for data from reverse phase column ── Error in `begin_iteration:end_iteration`: argument of length 0 Backtrace: ▆ 1. └─FastRet:::fit_gbtree(df, verbose = 0) at test-fit_gbtree.R:16:5 2. └─FastRet:::fit_gbtree_grid(...) 3. └─xgboost::xgb.train(...) [ FAIL 3 | WARN 5 | SKIP 0 | PASS 19 ] Error: ! Test failures. Execution halted Flavor: r-patched-linux-x86_64

Version: 1.1.4
Check: tests
Result: ERROR Running ‘testthat.R’ [38s/25s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(FastRet) > > test_check("FastRet") Starting 2 test processes. Saving _problems/test-train_frm-gbtree-11.R Saving _problems/test-fit_gbtree-8.R Saving _problems/test-fit_gbtree-16.R > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:56.73<1b>[0m Starting training of a lasso model > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:56.73<1b>[0m Mocking is enabled. Returning 'mockdata/lasso_model.rds' > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:56.91<1b>[0m Starting training of a lasso model > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:56.91<1b>[0m Mocking is enabled. Returning 'mockdata/lasso_model.rds' > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:56.91<1b>[0m Starting model Adjustment > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:56.91<1b>[0m dim(original_data): 442 x 126 > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:56.91<1b>[0m dim(new_data): 25 x 3 > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:57.02<1b>[0m predictors: 1, 2, 3, 4, 5, 6 > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:57.02<1b>[0m nfolds: 5 > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:57.02<1b>[0m Preprocessing data > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:57.03<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) + I(RT^3) + log(RT) + exp(RT) + sqrt(RT) > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:57.04<1b>[0m Estimating performance of adjusted model in CV > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:57.11<1b>[0m Fitting adjustment model on full new data set > test-plot_frm.R: <1b>[1;30m2025-12-13 05:33:57.11<1b>[0m Returning adjusted frm object > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.39<1b>[0m Starting model Adjustment > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.39<1b>[0m dim(original_data): 442 x 126 > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.39<1b>[0m dim(new_data): 25 x 3 > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.39<1b>[0m predictors: 1, 2 > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.39<1b>[0m nfolds: 5 > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.39<1b>[0m Preprocessing data > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.40<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.40<1b>[0m Estimating performance of adjusted model in CV > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.45<1b>[0m Fitting adjustment model on full new data set > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.45<1b>[0m Returning adjusted frm object > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.45<1b>[0m Starting model Adjustment > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.45<1b>[0m dim(original_data): 442 x 126 > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.45<1b>[0m dim(new_data): 25 x 3 > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.45<1b>[0m predictors: 1, 2, 3, 4, 5, 6 > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.45<1b>[0m nfolds: 5 > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.45<1b>[0m Preprocessing data > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.46<1b>[0m Formula: RT_ADJ ~ RT + I(RT^2) + I(RT^3) + log(RT) + exp(RT) + sqrt(RT) > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.46<1b>[0m Estimating performance of adjusted model in CV > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.52<1b>[0m Fitting adjustment model on full new data set > test-adjust_frm.R: <1b>[1;30m2025-12-13 05:33:57.52<1b>[0m Returning adjusted frm object > test-selective_measuring.R: <1b>[1;30m2025-12-13 05:33:57.75<1b>[0m Starting Selective Measuring > test-selective_measuring.R: <1b>[1;30m2025-12-13 05:33:57.75<1b>[0m Preprocessing input data > test-selective_measuring.R: <1b>[1;30m2025-12-13 05:33:57.75<1b>[0m Mocking is enabled for 'preprocess_data'. Returning 'mockdata/RPCD_prepro.rds'. > test-selective_measuring.R: <1b>[1;30m2025-12-13 05:33:57.76<1b>[0m Standardizing features > test-selective_measuring.R: <1b>[1;30m2025-12-13 05:33:57.76<1b>[0m Training Ridge Regression model > test-selective_measuring.R: <1b>[1;30m2025-12-13 05:33:57.76<1b>[0m Fitting Ridge model > test-selective_measuring.R: <1b>[1;30m2025-12-13 05:33:58.24<1b>[0m End training > test-selective_measuring.R: <1b>[1;30m2025-12-13 05:33:58.24<1b>[0m Scaling features by coefficients of Ridge Regression model > test-selective_measuring.R: <1b>[1;30m2025-12-13 05:33:58.25<1b>[0m Applying PAM clustering > test-selective_measuring.R: <1b>[1;30m2025-12-13 05:33:58.71<1b>[0m Returning clustering results [ FAIL 3 | WARN 5 | SKIP 0 | PASS 19 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-train_frm-gbtree.R:5:5'): train_frm works if `method == "GBTree"` ── <subscriptOutOfBoundsError/error/condition> Error in `FUN(X[[i]], ...)`: subscript out of bounds Backtrace: ▆ 1. └─FastRet::train_frm(...) at test-train_frm-gbtree.R:5:5 2. └─base::lapply(tmp, "[[", 2) ── Error ('test-fit_gbtree.R:8:5'): fit.gbtrees works as expected ────────────── Error in `begin_iteration:end_iteration`: argument of length 0 Backtrace: ▆ 1. └─FastRet:::fit_gbtree(df, verbose = 0) at test-fit_gbtree.R:8:5 2. └─FastRet:::fit_gbtree_grid(...) 3. └─xgboost::xgb.train(...) ── Error ('test-fit_gbtree.R:16:5'): fit.gbtrees works for data from reverse phase column ── Error in `begin_iteration:end_iteration`: argument of length 0 Backtrace: ▆ 1. └─FastRet:::fit_gbtree(df, verbose = 0) at test-fit_gbtree.R:16:5 2. └─FastRet:::fit_gbtree_grid(...) 3. └─xgboost::xgb.train(...) [ FAIL 3 | WARN 5 | SKIP 0 | PASS 19 ] Error: ! Test failures. Execution halted Flavor: r-release-linux-x86_64