
Idris Samawi Hamid
Luigi Scarso

Notepad++
FOR CONTEXT MKIV Version 0.98

Table of Contents

1 Background . 3

1.1 Motivation . 3

1.2 History . 3

2 Introduction to NOTEPAD++ . 4

2.1 Features . 4

2.2 NOTEPAD++ and SCITE . 5

2.3 Lexers and NOTEPAD++ . 5

2.3.1 Lexers: Internal, User-Defined, and External . 5

2.3.2 Recommended Plugins . 6

2.4 Installing NOTEPAD++ . 6

2.4.1 Basic Installation . 6

2.4.2 Recommended Settings . 7

3 The NOTEPAD++ for CONTEXT Package . 8

3.1 Components . 8

3.2 Installation . 12

4 Highlighting and Themes . 13

4.1 Solarized++: Screen Contrast and Color Scheme . 13

4.2 On Syntax and Semantic Highlighting . 13

4.3 Highlighting and the CONTEXT Lexer . 15

4.4 Silver Twilight Hi and Silver Twilight Lo . 17

4.5 ALM Fixed . 20

5 NPPEXEC, the Macro Submenu, and Shortcut Mapper . 20

5.1 NPPEXEC and Console Scripts . 20

5.2 NPPEXEC and CONTEXT . 21

5.3 The Macro and Run Submenus . 25

5.4 Configuring Shortcut Mapper . 26

6 The CONTEXT Plugin . 27

6.1 Components of the Plugin . 27

6.2 Configuring Keyword Classes: Style Configurator and ConTeXt.xml 27

6.2.1 A Trick . 28

6.3 Configuring Autocompletion and Calltips: context.xml . 29

6.3.1 Function Completion for Residual and User-Defined Commands 30

2

6.4 Configuring Markup Tags, Template Tags, and Keys: ConTeXt.ini 31

6.4.1 Markup . 32

6.4.2 Configuring the Right-Click Menu . 34

6.4.3 Keys . 35

6.4.4 Templates . 36

7 Note on Bidirectional Editing and Scintilla . 37

Acknowledgments . 39

References . 39

The Authors . 39

3

1 Background

1.1 Motivation

A continuing desideratum for CONTEXT is a user-friendly writing and editing environment, where the

range of application of the category “user-friendly” includes especially non-experts in programming

or software development. The lack of such an environment is one factor that inhibits the wider use of

CONTEXT. Despite its immense power, precision, and flexibility: At present it is not generally feasible

for instructors and researchers in, e.g., the humanities to assign the use of CONTEXT to students, or to

use it to collaborate on projects.

The first author of this manual, Idris Samawi Hamid, is a professor who has felt the acuteness of this

lacuna. In the course of an ongoing effort to address it,1 in 2017 a project to develop a set of utilities

for the Windows editor Notepad++, including a dedicated CONTEXT lexer plugin, was launched.
2 The

software development plan was developed and supervised by Hamid, who also wrote the color-scheme

and themes. The initial C++ code and Python scripts were written by Jason Wu (a research assistant

at Colorado State University); currently the code and scripts are being written by and maintained with

coauthor Luigi Scarso. This manual documents a major release of that project: For the moment we

call the project, simply, Notepad++ for CONTEXT MkIV: Lexer and Macro Utilities for Editing TEX

Documents.

1.2 History

Prior to his move to CONTEXT, Hamid was using the shareware editor WinEdt. At that time WinEdt

was (and surely still is) a very polished environment for writing and processing documents written in

TEX. However, configuring WinEdt for CONTEXT was critically impeded, due in major part to the fact

that much of its graphical user interface was hardcoded for a certain famous document preparation

system. Around the same time, lexers and tools were being developed for SciTE, which eventually

became the semi-official text-editor for CONTEXT. Despite its CONTEXT-friendly tools, Hamid continued

to miss many of the configuration and interface options of WinEdt that made editing and processing

TEX documents so efficient and user-friendly for non-programmers. After trying virtually every avail-

able option – explicitly TEX-friendly or other – he finally settled upon Notepad++.
3 Its look, feel, and

extensive configuration options allowed Hamid to quickly achieve a setup analogous to WinEdt. A few

characteristics of WinEdt were still missed; on the other hand, Notepad++ brought to the table other

features missing in WinEdt; these helped to make the transition worth it. For example, Notepad++

supported global bidirectional text editing essential for the Arabic script – WinEdt at the time had no

such support.4

1 For the first author, the critical requisite set for a CONTEXT editor also includes bidirectional capabilities to serve both academic

writing as well as the needs of the Oriental TeX project, including the Zahrāʾ typeface system for Arabic script (under current

development). See Section 2.2 and Section 7.
2 For explanation of what a lexer is, see Section 2.3.1.
3 First author Hamid was introduced to Notepad++ by Hans Hagen, the founder and primary developer of CONTEXT. Hagen also

developed the TEX and MetaPost interface used by SciTE in CONTEXT MkIV:

http://www.pragma-ade.nl/general/manuals/scite-context-readme.pdf.
4 Apparently WinEdt finally implemented support for bidirectional text editing in 2016. The first author also considered Emacs,

which finally released a version with bidirectional support in 2012 (Version 24.1):

http://lists.gnu.org/archive/html/info-gnu-emacs/2012-06/msg00000.html.

On the other hand, editors such as Emacs (or Vim) are far too esoteric for the target audience of this project. It should also be

mentioned that, in the Spring of 2017, the first author once again made an inventory of the available options and paradigms

for writing and editing content, including new editors such as Atom and Sublime Text; none could replace Notepad++ for the

target purposes and audience.

4

Eventually, over a decade ago, a basic package for Notepad++ was released to the CONTEXT community

by Hamid. It consisted of a number of configuration files, including, among other things,

• a UDL (User-Defined Language) file for code highlighting of different classes of TEX-commands and

other keywords;

• an autocompletion “API” file; and

• some console scripts, many of which appear under the submenu item Macros. These provided, among

other things, a functionality largely identical to that provided by the corresponding SciTE scripts for

CONTEXT – found under the submenmenu item Tools.5

Although remarkably versatile, the UDL system was still too restrictive. Other Notepad++ mecha-

nisms, such as autocompletion of control sequences, were not designed with TEX-type languages in

mind;this resulted in certain limitations or annoyances. Among other issues: As CONTEXT MkIV has

continued to develop in the direction of a pure markup language, its syntax has

• become considerably more verbose; and

• demanded a mechanism for easy tagging of text with, e.g., braces or a set of \start|\stop<command>

sequences.

Mere autocompletion of commands was no longer sufficient for efficient content writing and editing.

Fortunately WebEdit, a Notepad++ plugin designed for XML-type tagging and related function com-

pletion, came to the rescue. Unfortunately it also had certain limitations which inhibited a satisfactory

solution (such as a limit to the number of markup tags and no way to organize them by submenus).

In the wake of these and other limitations: What we needed was a dedicated CONTEXT lexer and plugin

to assist content writing and editing. In combination with other mechanisms and plugins, the result

would be a complete Notepad++ system for writing, editing, and processing CONTEXT documents.

Hence Notepad++ for CONTEXT MkIV.

2 Introduction to NOTEPAD++

2.1 Features

Developed by Don Ho, Notepad++ is a very popular text editor for the Windows platform. Although

geared towards programmers and web designers, it has a number of features that make it exception-

ally appropriate for non-programmers. Notepad++ features, among other things

• A user-friendly configuration system, via graphical dialogs and settings saved to editable XML files;

• both multiple and single-document splitting;

• translation of its display interface into multiple languages;

• the toolset TextFX, which provides a plethora of useful functions that would normally involve script-

writing on the part of the user;

5 That package, now obsolete, remains available here: http://wiki.contextgarden.net/File:Npp_ConTeXt-Uni.zip.

5

• a plugin system and a vast catalogue of over 100 available plugins which immensely extend the capa-

bilities of Notepad++ in a user-friendly manner; and

• the User-Defined Language (UDL) system, which allows the user to easily define folding rules and

syntax highlighting for a coding language that does not already come with Notepad++. It is especially

useful for simple scripting languages or text-file formats.6

2.2 NOTEPAD++ and SCITE

As mentioned earlier, CONTEXT already comes with SciTE. Both SciTE and Notepad++ are based on the

same text-editing component, Scintilla. Thus a user switching between the two editors can expect a

similar typing and editing experience. A fundamental difference between the two is that Notepad++’s

preferences, thematic styles, and shortcuts are all extensively configurable via a system of menus and

dialogs, whose style is mostly common to mainstream programs that use a GUI. For non-programmers

and the like, this is more comfortable than, e.g., editing the .properties files used by SciTE.

One of the most important features of Notepad++ is its support for global bidirectional editing. Some

background: Unfortunately Scintilla never implemented bidirectional editing, and the developer of

Scintilla apparently has little interest in pursuing it. Visually, basic mixed right-to-left (RTL) and

left-to-right (LTR) text may look normal, but selection of text whose direction is opposite to that of the

global direction of the editor will generally not copy and paste correctly. For SciTE the global direction

is, naturally, LTR; hence RTL will generally not copy and paste correctly.7 Notepad++ provides a

mechanism that mirrors, i.e., flips Scintilla behavior so that it can be used for RTL editing, except

that LTR will now generally not copy and paste correctly. So for proper RTL or LTR editing one must

switch the global direction to match the immediately desired editing direction.

SciTE in CONTEXT features a set of commonly used scripts that may be found under the Tools menu. In

Notepad++ for CONTEXT a similar set of tools – with identical shortcuts wherever convenient – may be

found under the Macro menu.

The core of Notepad++ is explicitly designed for speed. On Windows, Notepad++ generally starts up

fast, even faster than SciTE. A few plugins will slow Notepad++ down, however.

2.3 Lexers and NOTEPAD++

2.3.1 Lexers: Internal, User-Defined, and External

A lexer is a program (or subroutine of a program) that performs lexical analysis of a stream of text

(such as a TEX or Lua file). This means that it analyzes the entire text stream into discrete strings,

each of which belongs to some class with a specific meaning. For example: In our CONTEXT lexer \Caps

is a 5-character string that belongs to the class STYLE. Given a lexer class, each of its members is

assigned a particular highlighting convention, such as a specific color, typographical appearance, or

font. Notepad++ ships with highlighting and theme support for over 50 code languages (via native

internal lexers); the UDL system allows a user (even with little-to-no coding experience) to comfortably

configure and add more.8 For maximum flexibility and control, Notepad++ also supports external

6 For example, one may edit tables in an OpenType font editor, then save those tables to a text file with an associated syntax.

One may then choose to work with the text file instead of the Graphical User Interface (GUI). Notepad++ for CONTEXT MkIV

also includes a basic UDL for bibTEX.
7 The use of ‘may’ and ‘generally’ are meant to indicate that there may be some important exceptions and subtleties: See Sec-

tion 7.
8 To configure a private UDL: From the Notepad++ menu, go to

Language – Define your language…

6

lexers, development of which requires some C++ programming skill: Each external lexer will appear

under the Language menu and in the associated dialogs. An external lexer can add support for a

previously unsupported language, or it can be used to provide an alternative to a currently supported

language. For example, one can use the Lua lexer and highlighting that comes with Notepad++, or

one can download the external lexer Gmod Lua, then configure that to be the default lexer for the Lua

language. An external lexer can also be augmented by other features, which will then appear under

the Plugins submenu.

2.3.2 Recommended Plugins

For use as a complete environment for writing and editing documents, a number of plugins comple-

ment the Notepad++ for CONTEXT system. The following are highly recommended:

• NppExec

This is the console, and is an integral component of Notepad++ for CONTEXT; see Section 5. Although

one can have Notepad++ launch the command prompt or other console of one’s choosing, NppExec

is also needed to show a set of select scripts under the Macro menu. A standard installation usually

gives the option of installing the console. Or one can use Plugin Manager (see below).

• Explorer

Notepad++ can launch the normal Windows Explorer. But there is also the Explorer plugin which can

be docked inside of the editor or detached; it has some useful features such as a filter which allows

one to view only files of a selected type.

• DSpellCheck

This spell checker works well, although it could be improved. Currently it doesn’t make exceptions

for words that begin with a backslash; this means that most TEX control sequences are treated as

misspelled. We hope to see this fixed in the short term.

• Compare

This is a plugin for comparing files; it launches a double-pane view and a dockable applet.

• XBrackets Lite

This plugin provides automatic completion of different types of brackets and is configurable. Notepad++

comes with some native facility for bracket control, but XBrackets Lite is more useful.

• Plugin Manager

This plugin maintains a list of i) all registered plugins, ii) installed plugins, and iii) installed plugins for

which updates are available. One can choose to install, update, or delete any given plugin as desired.

In addition to the recommended set above, there are many other plugins available, e.g., NppDocShare

for collaborative editing, MarkdownViewer++ for previewing markdown output, and XMLTools. With

a little research and some tweaking, it is not hard to turn Notepad++ into a writing, editing, and

development environment that will suit most of one’s needs.

2.4 Installing NOTEPAD++

2.4.1 Basic Installation

A basic Notepad++ installation may be setup via the standard installer or as a standalone package.

Both are available from here:

7

https://notepad-plus-plus.org/download/

For the average user, it is best to use the standard Notepad++ installer. Currently Notepad++ for

CONTEXT supports (i.e., has been tested to work under) Notepad++ Version 7.5.4 (32-bit) and NppExec

Version 0.5.3.9 64-bit support is planned for the near future; see also Section 3.2. There are two

directories the user should make note of:

C:\Program Files (x86)\Notepad++

C:\Users\<username>\AppData\Roaming\Notepad++

The core files of Notepad++ for CONTEXT will be installed in these two directories.

Some expert users may prefer to install a standalone Notepad++ as well as all associated local files

into this single directory:

/ConTeXt/data/notepad++

This is analogous to the standalone directory for SciTE:

/ConTeXt/data/wscite

2.4.2 Recommended Settings

• Notepad++ does not support automatic hard wrap of lines that surpass a certain length (as does

WinEdt). That is, Notepad++ doesn’t insert new-line breaks when a line reaches the maximum width

of the editing window (or some user-specified width). Notepad++ does support soft wrap of lines:

This means that a line longer than the editing-window length will appear as though it is split into

multiple lines, but is treated by Notepad++ as a single line. Soft wrap can be toggled on and off:

View – Word wrap (Ctrl+Alt+W)

Except for special cases such as the editing of wide tables, it is recommended to keep Word Wrap on.

Onemaymanually break long-editor or soft-wrap lines into distinct paragraphs of multiple editor lines,

each with a select maximum width of characters, by selecting the text and choosing

TextFX – Edit – ReWrap Text to (Clipboard or 72) width (Ctrl+Alt+Shift+INS)

Eventually the first author came to the conclusion that automatic text breaking is not as helpful as

first thought. For example, a search for a string of text longer than one word will miss instances if a

line break occurs within that string.

• Based on extensive writing and editing work with Notepad++, the first author has found it helpful,

for purposes of organization and productivity, to maintain the following setting:

Settings – Preferences – Editing – Line Wrap – Indent

Indented wrapping happens with respect to the beginning of the line. So if a given line is tabbed or

padded with spaces prior to its first character, any soft-wrapped text will always be indented with

respect to the column where the line begins. This allows for, e.g., hierarchical organization or nesting

of paragraph levels if desired.

9 It has been noticed that, when NppExec is updated to a newer version, the shortcuts in the Macro submenu sometimes fall out

of sync and have to be reset. See also Section 5.3.

8

• Notepad++ has a toolbar, but its style is quite dated. The first author has found it more productive to

leave it turned off:

Settings – Preferences – General – Toolbar – Hide

• Finally, one may toggle this setting for treatment of the backslash:

Settings – Preferences – Word character list –

Add your character as part of word – \

3 The NOTEPAD++ for CONTEXT Package

3.1 Components

Notepad++ for ConTEXt is organized as follows:

/Npp-for-ConTeXt/doc

/Npp-for-ConTeXt/Program Files (x86)

/Npp-for-ConTeXt/Roaming

/Npp-for-ConTeXt/scripts

/Npp-for-ConTeXt/Program Files (x86)/Notepad++

/Npp-for-ConTeXt/Program Files (x86)/Notepad++/plugins

/Npp-for-ConTeXt/Program Files (x86)/Notepad++/plugins/ConTeXt.dll

/Npp-for-ConTeXt/Program Files (x86)/Notepad++/plugins/APIs

/Npp-for-ConTeXt/Program Files (x86)/Notepad++/plugins/APIs/context.xml

/Npp-for-ConTeXt/Program Files (x86)/Notepad++/plugins/APIs/context-user.xml

/Npp-for-ConTeXt/Program Files (x86)/Notepad++/plugins/Config

/Npp-for-ConTeXt/Program Files (x86)/Notepad++/plugins/Config/ConTeXt.xml

/Npp-for-ConTeXt/Roaming/Notepad++

/Npp-for-ConTeXt/Roaming/Notepad++/config.xml

/Npp-for-ConTeXt/Roaming/Notepad++/contextMenu.xml

/Npp-for-ConTeXt/Roaming/Notepad++/shortcuts.xml

/Npp-for-ConTeXt/Roaming/Notepad++/userDefineLang.xml

/Npp-for-ConTeXt/Roaming/Notepad++/stylers.xml

/Npp-for-ConTeXt/Roaming/Notepad++/plugins

/Npp-for-ConTeXt/Roaming/Notepad++/plugins/config

/Npp-for-ConTeXt/Roaming/Notepad++/plugins/config/ConTeXt.ini

/Npp-for-ConTeXt/Roaming/Notepad++/plugins/config/NppExec.ini

/Npp-for-ConTeXt/Roaming/Notepad++/plugins/config/npes_saved.txt

/Npp-for-ConTeXt/doc

/Npp-for-ConTeXt/doc/npp-context-manual.pdf

/Npp-for-ConTeXt/doc/npp-context-manual.tex

9

/Npp-for-ConTeXt/doc/README.md

/Npp-for-ConTeXt/Roaming/Notepad++/plugins/themes

/Npp-for-ConTeXt/Roaming/Notepad++/plugins/themes/Silver Twilight Hi.xml

/Npp-for-ConTeXt/Roaming/Notepad++/plugins/themes/Silver Twilight Lo.xml

/Npp-for-ConTeXt/scripts/command_primitives_api_new.py

/Npp-for-ConTeXt/scripts/update-ConTeXt.py

What follows is a brief description of each component of this system:

1. CONTEXT Lexer and Plugin

ConTeXt.dll is the heart of the system. It manages the classes specified for content highlighting,

autocompletion and calltips, as well as the content-markup and templates system.

/Npp-for-ConTeXt/Program Files/Notepad++/plugins/ConTeXt.dll

2. Initialize Plugin

ConTeXt.ini allows the user to add, remove, configure, and organize commands for content markup

into menus and submenus, as well as to specify a shortcut that can be replaced by a template in

running text.

/Npp-for-ConTeXt/Roaming/Notepad++/plugins/config/ConTeXt.ini

3. Right-Click Menu

Notepad++ features a right-click menu mechanism, whose settings are managed via the configuration

file contextMenu.xml. The full set of markup menus in the plugin can be added to this file, then edited

manually as desired. Note that, despite appearances, the name contextMenu.xml has nothing to do

with CONTEXT; it is native to Notepad++.

/Npp-for-ConTeXt/Roaming/Notepad++/contextMenu.xml

4. Autocompletion API

The so-called “API” context.xml features (what aims to be) a complete list of official CONTEXT com-

mands, organized alphabetically for autocompletion purposes.10 For a subset of this list, each is also

tagged with information about usage; when typed and followed by a left bracket ‘[’, this information

will appear as a calltip (also called a tooltip).

If autocompletion is desired for user-definedmacros, then they should be placed in context-user.xml.

Its structure follows that of context.xml, and and one may configure calltips for user macros as well.

See Section 6.3.1.

/Npp-for-ConTeXt/Program Files (x86)/Notepad++/plugins/APIs/context.xml

/Npp-for-ConTeXt/Program Files (x86)/Notepad++/plugins/APIs/context-user.xml

10 The list of CONTEXT commands is currently generated from the CONTEXT sources by a Python script; see Heading 11 below.

There is still a minor residue of commands that are missed in the sources for the list, and thus by the script as well. We hope

to see that gap closed in the near future.

10

5. Content-Highlighting Classes

ConTeXt.xml includes the same list of official CONTEXT commands, this time organized into semantic

classes. These and other classes are configured for content highlighting through Notepad++’s Style

Configurator.

/Npp-for-ConTeXt/Program Files/Notepad++/plugins/Config/ConTeXt.xml

6. Highlighting: Silver Twilight Hi and Silver Twilight Lo

Two general themes for content highlighting have been developed especially for this project: the first

and default theme (Hi) is light, the second (Lo) is dark. Each may be accessed and tweaked via Style

Configurator, or copied to a new name and modified to make a new theme. See Section 4.4.

Silver Twilight themes apply to one degree or other throughout the default languages that come with

Notepad++ (there remains some work to do in that respect).

/Npp-for-ConTeXt/Roaming/Notepad++/plugins/themes/Silver Twilight Hi.xml

/Npp-for-ConTeXt/Roaming/Notepad++/plugins/themes/Silver Twilight Lo.xml

The file stylers.xml is optional: It is identical to Silver Twilight Hi, and is a starting point for the

user to make one’s own changes to the theme. This file will appear in Style Configurator labeled as

Default (stylers.xml).

/Npp-for-ConTeXt/Roaming/Notepad++/stylers.xml

7. NppExec Scripts

A number of scripts commonly used for CONTEXT productivity are saved in npes_saved.txt. Normally

one configures these through the dialog that appears when the console is executed (by typing F6).

/Npp-for-ConTeXt/Roaming/Notepad++/plugins/config/npes_saved.txt

8. Initialize NppExec and Configure Macro Menu

Default settings for the appearance of NppExec, consistent with the Silver Twilight themes, are saved

in NppExec.ini. This file also maintains a list of console scripts that are to appear under the Macro

menu; this is normally edited via the NppExec Advanced Options dialog.

/Npp-for-ConTeXt/Roaming/Notepad++/plugins/config/NppExec.ini

9. Users Manual

The user’s manual (this document) and its source are named, respectively, npp-context-manual.pdf

and npp-context-manual.tex.

/Npp-for-ConTeXt/doc/npp-context-manual.pdf

/Npp-for-ConTeXt/doc/npp-context-manual.tex

10. Shortcuts

Virtually all menu commands can be assigned a keyboard shortcut, and each shortcut is configurable.

A basic system of shortcuts, consistent across a number of recommended or useful plugins, is provided

by shortcuts.xml.

11

Notepad++ has a Run… command that allows the user to execute a script that will call an external

programs; that script can be saved. Saved scripts appear under the Run menu; these are also saved

in shortcuts.xml. The user will almost certainly want to edit the Run menu at some point.

/Npp-for-ConTeXt/Roaming/Notepad++/shortcuts.xml

11. Python Scripts

New versions of CONTEXT are released often; the addition of new control sequences (= commands) or

an update of the parameters of some already existing command is not uncommon. For those who

update often: The lists of official commands in ConTeXt.xml and context.xml are generated from the

sources via the Python script command_primitives_api_new.py; update-ConTeXt.pymakes sure that

local changes to the ConTeXt.xml configuration are saved and not overridden.

/Npp-for-ConTeXt/scripts/command_primitives_api_new.py

/Npp-for-ConTeXt/scripts/update-ConTeXt.py

For more detail about these scripts and their usage, see

/Npp-for-ConTeXt/doc/README.md

12. BibTEX

Finally, there is a UDL (user-defined language) file configured for content highlighting of .bib files;

it is consistent with the Silver Twilight themes. This file may be considered optional. Any additional

UDL’s defined or imported by the user will also be saved to the file userDefineLang.xml.

/Npp-for-ConTeXt/Roaming/Notepad++/userDefineLang.xml

13. SumatraPDF

Notepad++ uses as the default pdf viewer. It’s fundamental advantage over Adobe Reader or Acrobat

is that it does not lock the pdf file. This means that one can continue to view the output .pdf while

LuaTEX processes its source .tex file. See Section 5.2 for examples of its use in console scripts.11

If SyncTEX is turned on: Given a PDF file, SumatraPDF has the ability to i) read the SyncTEX file

associated with that file, if any; ii) open the source TEX file in Notepad++; and iii) go to the line

specified via double-clicking a position in the PDF file that carries some synchronization info.12

In the relevant console scripts – seeSection 5.2 – SumatraPDF is invoked via a batch file, sumatra.bat.

/Npp-for-ConTeXt/scripts/sumatra.bat

14. GUI and Editor Settings

Configuration options for Notepad++ are set through

Settings – Preferences

User preferences are saved in config.xml. The (optional) version that ships with Notepad++ for

CONTEXT contains a recommended set of configuration options.

11 There are alternatives to SumatraPDF; an example is Okular (which requires KDE for Windows).
12 Unfortunately there are too many structural elements of CONTEXT whose text do not carry the needed synchronization info;

SyncTEX works best with normal paragraphed text.

12

/Npp-for-ConTeXt/Roaming/Notepad++/plugins/config/config.xml

3.2 Installation

In a future version, this plugin package should become available through the official Notepad++

Plugin Manager. Currently it must be installed manually. The Notepad++ for CONTEXT package,

Npp-for-ConTeXt.zip, may be obtained here:

https://github.com/luigiScarso/context-npp

https://github.com/luigiScarso/context-npp/blob/master/install/Npp-for-ConTeXt.zip

Once again, the directory structure is as follows:

/Npp-for-ConTeXt/doc

/Npp-for-ConTeXt/Program Files (x86)/Notepad++

/Npp-for-ConTeXt/Roaming/Notepad++

/Npp-for-ConTeXt/scripts

Be sure that no instances of Notepad++ are running. Copy /doc and /scripts to

C:<ConTeXt root directory>\data\notepad++

Copy /Program Files (x86)/Notepad++ onto

C:\Program Files (x86)\Notepad++

Copy /Roaming/Notepad++ onto13

C:\Users\<username>\AppData\Roaming\Notepad++

From /Npp-for-ConTeXt/scripts, move sumatra.bat into your CONTEXT root directory:

C:\<ConTeXt root directory>

For a standalone installation in C:<ConTeXt root directory>\data\notepad++, first install a stand-

alone Notepad++; see Section 2.4. Basically you will merge

/Roaming/Notepad++

/Program Files (x86)/Notepad++

into this directory:

C:<ConTeXt root directory>\data\notepad++

Now open Notepad++: If all has gone well, you will see the following submenus:

Language – ConTeXt

Language – BibTeX <under "Define your own language">

Plugins – ConTeXt

You should also see CONTEXT-related commands under the Macro menu, e.g.,

13 For older versions of Windows such as Vista, the local configuration folder (%APPDATA%) may have a different name. If necessary,

type ‘%APPDATA%’ into the address field of Windows Explorer to determine the official location of the local Notepad++ directory.

13

End TeX Control Sequence

<contd.>

Scratch ConTeXt File

Check ConTeXt File

Process ConTeXt File

<contd.>

4 Highlighting and Themes

4.1 Solarized++: Screen Contrast and Color Scheme

Writing and editing content via a digital display for many hours on end can cause severe strain on

the eyes. One way to ameliorate this is to use a comfortable color scheme for one’s editor. The

individual colors provide the building blocks for themes and for distinguishing the various types of

written content involved in one’s editing.

Color-scheme preferences will naturally differ from person to person to one degree or other. However,

a couple of general rules appear to stand out for long periods of editing:

• Maintain a medium-to-high balance of contrast between the main text and background tones; i.e.,

strong contrast, but not too high.

• Choose soft colors to distinguish classes of content; not too bright, not too dim.

One of the most thought out and successful color schemes is Solarized, by Ethan Schoonover.14 It

features two series: a series of eight background tones and another series of eight accent colors. As

excellent as it is, the first author found the Solarized background tones to exude something of a murky

or “swampy” aesthetic. The light theme is too bright for continuous full-screen use (see Section 4.4).

The content colors are more successful: They are both soft and distinct, although Solarized green is

perhaps better called yellowgreen.

In Notepad++ for CONTEXT the first author has developed a modification of Solarized; the resultant

color scheme is called, perhaps appropriately, Solarized++. There are nine background tones and

ten accent colors. The background tones are entirely different from the original Solarized; the accent

colors are largely the same. However, Solarized green has been replaced with Solarized++ green,

Solarized green has become Solarized++ yellowgreen, and an additional color, Solarized++ maroon,

has been added. See Figure 1.

In addition, Solarized++ currently features a series of five supplementary anti-base tones for purposes

of contrast when needed. As the name suggests, these five are meant to complement the base tones;

see Figure 2.

4.2 On Syntax and Semantic Highlighting

Syntax highlighting has been shown to have a positive impact on the comprehension of computer pro-

grams.15 In the experience of the authors, the same is true for highlighting of structural and stylistic

markup in CONTEXT. There is a (perhaps pedantic) difference: Although the high-level, basic user in-

terface of CONTEXT is expressed in terms of control sequences that take the form of TEX commands,

14 See http://ethanschoonover.com/solarized.
15 See, e.g., Sarkar (2015).

14

Name Hex Sample Name Hex Sample

Accent Colors Base Tones

Yellow #B58900 Base04 #1E2D2E

Orange #CB4B16 Base03 #324140

Red #DC322F Base02 #475652

Magenta #D33682 Base01 #5C6B64

Violet #6C71C4 Base0 #718076

Blue #268BD2 Base1 #899589

Cyan #2AA198 Base2 #A2AA9D

Green #399900 Base3 #BABFB1

Maroon #A12A33 Base4 #D3D5C5

Yellowgreen #859900

Figure 1 Solarized++: Base Tones and Accent Colors

Anti-Base Tones

Antibase0 #73606D

Antibase1 #897781

Antibase2 #9F8E96

Antibase3 #B5A5AA

Antibase4 #CCBDBF

Figure 2 Solarized++:

Anti-Base Tones

TEX per se closely exemplifies the paradigm of a programming language in a strict sense; whereas the

user interface of CONTEXT has developed towards exemplifying the paradigm of a markup language.

Technically speaking, even if one writes a basic CONTEXT document with pure markup and no deeper

commands, one still has to run that document through a compiler which will interpret the input and

convert it to some output, normally a PDF document. We might describe the basic CONTEXT interface

as a hybrid: markup language in appearance and programming language in reality.

Markup is focused more on meaning, i.e., semantics, and less on grammar, i.e., syntax. Programming

involves syntax to a high degree, and also semantics. Because syntax is often subtle and slippery

for the programmer, code highlighting for programming languages generally takes the form of syntax

highlighting, so much so that ‘code highlighting’ and ‘syntax highlighting’ are often treated as synony-

mous. In recent years, some coders have begun to emphasize a distinction between syntax highlight-

15

ing and semantic highlighting.16 Because the interpreting of structural and stylistic markup pertains

much more to matters of meaning than to grammar, highlighting of CONTEXT code is best contextual-

ized in terms of semantic highlighting. Of course, there is syntax to CONTEXT as well: The different

mechanisms between the earlier Table and the now standard TABLE environments (for typesetting of

tabular data) exhibit stark differences in syntax. Considering possible models and implementations of

code highlighting specific to the clarification of CONTEXT syntax is a matter for future research.
17

4.3 Highlighting and the CONTEXT Lexer

Settings for semantic highlighting of CONTEXT keywords in Notepad++ are saved in the configuration

file ConTeXt.xml, mentioned earlier. In particular, there are 14 classes of keywords; members of

each class are given a specific color; these may be viewed (and edited) in Style Configurator, under

Language:ConTeXt.18

Following is a brief description of each keyword class supported in the CONTEXT lexer. See also Fig-

ure 3.

Figure 3 CONTEXT Lexer and Notepad++ Style Configurator

1. DEFAULT

This is the default keyword class, applied to strings which involve no other semantics. Normal text

will generally belong to the default class. As default, there are no other keywords specified for this

class.

16 For detailed discussion of the distinction between syntax and semantic highlighting, see

Semantic Code Highlighting (https://goo.gl/dB5d9u – accessed March 15, 2018); and

C++ IDE Evolution: From Syntax Highlighting to Semantic Highlighting (https://goo.gl/jTPwD1 – accessed March

15, 2018).
17 Technical note: ConTeXt resembles SGML – derivatives include XML and HTML – in that it can used to define new semantics.

For example, one can create a verbatim environment, which simulates typing or editing. Ideally, then, the lexer should be coded

to manage a user-defined semantics, defined itself at runtime. But this is not enough because, furthermore, the semantics of a

macro can temporarily change. For example:

\begingroup \let\oldvbox\vbox \let\vbox\relax .\vbox{..} \endgroup

Here \vbox means nothing inside the group so semantics are context sensitive.
18 Because the CONTEXT language comes in the form of a lexer plugin, it will generally appear near the bottom of the language

list on the left side of the dialog, after the natively supported languages, and along with other lexer plugins, if installed. Some

classes allow the user to add one’s own keywords to the class as well

https://goo.gl/dB5d9u
https://goo.gl/jTPwD1

16

2. LINE COMMENTS

This class includes the percent sign and all text on the same line that comes after it. Of general scope,

there are no keywords specified for this class.

3. TEX ETEX

Primitive commands of TEX and 𝜀-TEX are treated as one class.

Allows user-defined keywords: No

4. LUATEX

LuaTEX has its own class. Although not often, new primitives can appear, and LuaTEXperts can define

their own.

Allows user-defined keywords: Yes

5. SYSTEM

This is an official CONTEXT keyword class. It includes system-level commands, i.e., those which are not

meant for general typesetting and which the average user will rarely or never see.

Allows user-defined keywords: Yes

6. DOCUMENT

This is an official CONTEXT keyword class. It includes commands that are generally meant to produce

a stream of text within a document.

Allows user-defined keywords: Yes

7. STYLE

This is an official CONTEXT keyword class. It includes commands that are generally meant to style a

stream of text within a document.

Allows user-defined keywords: Yes

8. CHARDEF (formerly OTHER)

This is an official CONTEXT keyword class. It consists of commands that translate to certain Unicode

characters that are needed but normally inconvenient to typeset directly.

Allows user-defined keywords: Yes

9. CONSTRUCT

This class includes keywords used to constitute prefixes to other keywords, such as \place and \set.

The prefix and any immediately following string connected to that prefix is treated as a keyword.

Words in other classes that already contain one of these prefixes are not effected.

Allows user-defined keywords: Yes

17

10. PRIVATE

These are for keywords defined by the user. A few highlight definitions are given for illustration, and

the user can add more.

Allows user-defined keywords: Yes

11. START OPEN

These are opening commands that begin a folding environment; each must have an associated closing

keyword in the STOP CLOSE class. A small symbol will appear in the margin next to the opening

keyword, with a bright line leading to the closing symbol.

Allows user-defined keywords: Yes

12. STOP CLOSE

These are closing commands that end a folding environment; each must have an associated opening

keyword in the START OPEN class.

Allows user-defined keywords: Yes

13. OPERATORS

This class includes punctuation and related symbols.

Allows user-defined keywords: No

14. NUMBERS

This includes numerals and related symbols.

Allows user-defined keywords: No

4.4 Silver Twilight Hi and Silver Twilight Lo

The Solarized++ color scheme and lexer keyword classes for semantic highlighting together constitute

the components which go into Silver Twilight. Silver Twilight consists of two closely related themes

which are designed for writing and editing for long hours, usually on a monitor in portrait mode.

Portrait mode is generally more efficient than landscape mode for writing and editing productivity: It

allows for the editor to comfortably fill most or all of the width of the screen, depending on the monitor

resolution. The maximum width of the editor window should correspond to a maximum of between 77

to 105 characters per line within the typing area of the editor (average 91), depending on the zoom

level and the choice of fixed-width font.19 This leaves a generous full length of the rest of the screen

available for writing or editing with a minimum need for scrolling.

19 Typographers recommend a length of 45 to 75 characters per line (average 60); see Bringhurst (2008). However, writing and

editing in a fixed-width font is not the same as reading the final output in a book or on a web page. Restricting the typing area

of an editor to 45 to 75 characters per line feels forced. That said, Notepad++ can display a vertical edge and the user can

choose a value for "number of columns", i.e., number of characters per line (we set it to 91). It would be nice if Notepad++

could automatically soft wrap (i.e., wrap without line breaks – see Section 2.4.2) long lines at the vertical edge instead of at

the border of the edge of the typing area.

18

Hi

Style Color Sample Style Color Sample

Global Override

Background (B)

Base4 Global Override

Foreground (F)

Base04

Line Number

Margin B

Base3 Line Number

Margin F

Antibase0

Current Line

Background

Base3 Comment Base0

Inactive Tabs Base2 Smart

Highlighting

Cyan

Selected

Text Color

Base1 Fold Active Cyan (NPP)

Fold Margin B Antibase4 Fold Margin F Base0

Figure 4 Global Style: Silver Twilight Hi

Hi

Style Color Sample Style Color Sample

Global Override

Background (B)

Base04 Global Override

Foreground (F)

Base4

Line Number

Margin B

Base03 Line Number

Margin F

Antibase0

Current Line

Background

Base03 Comment Base0

Inactive Tabs Base02 Smart

Highlighting

Cyan

Selected

Text Color

Base01 Fold Active Cyan (NPP)

Fold Margin B Antibase4 Fold Margin F Base0

Figure 5 Global Style: Silver Twilight Lo

On the other hand, staring at such a large area of writing space for long periods needs to be amelio-

rated, as discussed earlier. The Silver Twilight themes are designed to address and meet that need.

Silver Twilight Hi is a light theme, perhaps best for daylight hours, but works for nighttime as well.

Silver Twilight Lo is a dark theme, perhaps best for nighttime, but works for daylight as well. At

the time of writing this manual, the first author is somewhat more satisfied with Silver Twilight Hi

than with Silver Twilight Lo; your mileage may vary. Both could benefit from improvement in future

versions; suggestions from the CONTEXT community are welcome!

In Notepad++ Style Configurator, a global style may be configured to set the general appearance

19

Hi Lo

Keyword

Class

Color Sample Color Sample

DEFAULT (F) Base03 Base03

LINE

COMMENTS

Base0 Base0

TEX/ETEX Maroon Maroon

LUATEX Orange Orange

SYSTEM Yellowgreen Yellowgreen

DOCUMENT Green Green

STYLE Yellow Yellow

CHARDEF Magenta Magenta

CONSTRUCT Violet Violet

PRIVATE Blue Blue

STOP OPEN Cyan Cyan

STOP CLOSE Cyan Cyan

OPERATORS Maroon Maroon

NUMBERS Cyan Cyan

Figure 6 CONTEXT Lexer Style: Silver Twilight

of the editor. See Language: Global Styles: Individual elements for configuration are listed to the

right under Language: Style: <element>. A lexer style involves setting the code highlighting rules

for each keyword class of a given lexer. See Language:<language>: Individual keyword classes for

each lexer are also listed under Language: Style: <keyword class>. See also Figure 3.

Each Silver Twilight theme consists of a global and a lexer style. See Figures 4 and 5 for the global

style of Silver Twilight High and of Silver Twilight Lo respectively.

Note that the lexer styles for Silver Twilight Hi and Lo for CONTEXT are almost identical: The only

difference is that the foreground and background colors for the DEFAULT keyword class are reversed;

see Figure 6. This is intentional: the two themes are intended to form a single system. In order for

a common lexer style to work well between light and dark themes, the color scheme has to be well

thought out.20 Again, there is always room for improvement.

20 The developer of Solarized had this ideal in mind: A single color scheme should work across nearly all keyword classes for

20

4.5 ALM Fixed

The default font for Silver Twilight is Arabic-Latin Modern Fixed, a derivation from Latin-Modern

Mono developed by the first author, Idris Samawi Hamid. Designed for extensive use of Arabic script

and its diacritics, it has a larger than usual interline spacing. For those who desire tighter interline

spacing or just another default typeface: Instead of tediously replacing the font in every dialog of

Style Configurator, one can open ConTeXt.xml and stylers.xml and make a global substitution of the

name ‘ALM Fixed’ with that of another font (preferably fixed-width) of one’s choosing, e.g., ‘Dejavu

Sans Mono’.

5 NPPEXEC, the Macro Submenu, and Shortcut Mapper

5.1 NPPEXEC and Console Scripts

Figure 7 NppExec and

CONTEXT-related Scripts

The NppExec console emulator is an integral part of the Notepad++ for CONTEXT system.
21 When

invoked (F6 is the default shortcut), NppExec opens a dialog which features a typing area for one

to write a script, an option to save it, as well as a drop-down list of saved scripts; see Figure 7. There

are 22 scripts that come with Notepad++ for CONTEXT; one can add and remove these or one’s own

private scripts.

One can install multiple copies of NppExec; just copy NppExec.dll to, e.g., NppExec2.dll, etc. Then

one will be able to, e.g., run two instances of LuaTEX simultaneously.

NppExec has considerable documentation, including its own manual; see

each of a pair of light and dark themes. Note that a pair of Solarized themes is available for Notepad++ (the user will have to

change any background tones used by the CONTEXT lexer style, as they are not compatible).
21 Of course, a user can choose to configure an external console for use with Notepad++ via the Run… menu.

21

Plugins – NppExec – Help/Docs

Plugins – NppExec – Help/Manual.

For help using common DOS commands such as copy, move, and mkdir – these are actually part of the

system interpreter cmd.exe – see Section 4.4. For an example, see Heading 6 in Section 5.2.

Let’s take a look at

Plugins – NppExec – Advanced Options...

Figure 8 NppExec Advanced Options

See Figure 8. At the top right you will notice that a script can be executed when Notepad++ starts

or exits. By default, the Scratch TeX File script is executed when Notepad++ starts: The user will

have to edit that script and point it to the directory where one’s scratch file is located; see Head-

ing 13 in Section 5.2. The Purge Files Keep SyncTEX script is executed when Notepad++ exits;

it then applies only to the temporary files associated with the leftmost tab (see also Heading 6 in

Section 5.2). Of course one can disable the execution of any start or exit script.

The NppExec console emulator is configured to use a Solarized++ color scheme that closely resem-

bles Silver Twilight Lo; see Section 9. This is also set in Advanced Options. The authors find the

combination of Silver Twilight Lo for the console and Silver Twilight Hi for the main editing area to

be quite pleasing.

name: console

file: console

state: unknown

Figure 9 NppExec Console

5.2 NPPEXEC and CONTEXT

A brief description of each console script that ships with Notepad++ for CONTEXT follows. For each

command, mention is made of whether it appears in the Macro submenu (see Section 5.3). If it has a

22

default shortcut, that is also mentioned. Note that the last script executed by NppExec can be invoked

by a shortcut, F7 by default.

Most of the script names below should be self-explanatory; many are annotated. For an explanation

of the environment variables, see the NppExec documentation. Remember that everything below

– the number of scripts, the content of each script, the macro submenu, and shortcuts – can be easily

configured to suit the user’s needs.

1. Check ConTEXt File (Ctrl+Alt+0)

This script quickly checks the TEX file for errors without running MkIV.

Appears in Macro submenu: Yes

mtxrun --autogenerate --script check

2. ConTEXt: Process ConTEXt File (Ctrl+1)

This script runs MkIV on the file visible under the active tab.

Appears in Macro submenu: Yes

context.exe "$(NAME_PART).tex"

3. ConTEXt: Process ConTEXt Project (Ctrl+Shift+1)

A main, project file often involves a multiple of subsidiary input files. One often wants to run the main

file while working on a different file. This script runs MkIV on the main file, regardless of which tab

is active. To view a project independent of the active tab, see Heading 15.

Appears in Macro submenu: Yes

The user will have to fill in the directory path and project name; see below:

cd "C:\<path to your directory>"

context.exe "<your project>.tex"

4. ConTEXt: Process ConTEXt File (luajittex) (Ctrl+Alt+Shift+1)

LuajitTEX is an experimental version of LuaTEX. It is not currently advertised for production purposes

and may be ignored by the average user.

Appears in Macro submenu: Yes

mtxrunjit --autogenerate --script context test.tex "$(NAME_PART).tex"

5. ConTEXt: Purge Files (Ctrl+3)

This script purges temporary files (ending in, e.g., .tuc, .log) that can clutter the user directory, take

up cloud-storage space, etc.

Appears in Macro submenu: Yes

context --purge

23

6. ConTEXt: Purge Files Keep SyncTEX

This script purges all temporary files except the SyncTEX file. This script is executed by default when

Notepad++ exits (in which case, it applies only to the temporary files associated with the leftmost tab).

One may then open Notepad++ at a particular line via SumatraPDF and SyncTEX; see Heading 13 in

Section 3.1.

Note the the use of cmd /c ren instead of the usual ren.exe. As mentioned earlier, see Section 4.4

of the NppExec manual.

Appears in Macro submenu: No

cmd /c ren *.synctex *.synctext

context --purge

cmd /c ren *.synctext *.synctex

7. ConTEXt: Generate MkIV Format (Ctrl+4)

Appears in Macro submenu: Yes

luatools.exe --generate

context.exe --make

8. ConTEXt: Update ConTeXt

Appears in Macro submenu: Yes

first-setup.bat --engine=luatex

9. ConTEXt: Refresh Filename Database

Appears in Macro submenu: Yes

mktexlsr

luatools.exe --generate

10. ConTEXt: Refresh FNDB (verbose)

Appears in Macro submenu: No

luatools.exe --verbose --generate

11. LuaTEX: Generate Formats (luatex-plain)

This is for generating the LuaTEX version of the Plain TEXformat. Hardly needed by the average CON-

TEXT user.

Appears in Macro submenu: No

luatex --ini luatex-plain.tex

12. LuaTEX: Plain LuaTEX

The main use of Plain LuaTEX is to test possible bugs in LuaTEX. Hardly needed by the average CONTEXT

user.

24

Appears in Macro submenu: No

luatex --ini luatex-plain.tex

13. TEX: Scratch ConTEXt File (Ctrl+9)

It’s always good to have a scratch file on hand to, e.g., test individual elements and components of

a larger project, explore or practice usage of some command, or make a minimal working example

when encountering difficulty with some set of commands. This script is executed by default when

Notepad++ starts; thus every session opens with a scratch file tab. See also Section 5.1.

Appears in Macro submenu: Yes

The user will have to fill in the directory path; see below:

notepad++.exe "C:\<path to your directory>\scratch.tex"

14. PDF: View PDF File (Ctrl+2)

We use SumatraPDF by default; see Heading 13 in Section 3.1.

Appears in Macro submenu: Yes

sumatra.bat "$(CURRENT_DIRECTORY)\$(NAME_PART).pdf"

15. PDF: View PDF File (project) (Ctrl+Shift+2)

This script will show the PDF file of the main file or project, independent of active tab; seeHeading 3.

Appears in Macro submenu: Yes

The user will have to fill in the directory path and project name; see below:

cd "C:\<path to your directory>

sumatra.bat "<your project>.pdf"

16. VIEW: Open logfile (Ctrl+5)

Appears in Macro submenu: Yes

notepad++.exe "$(CURRENT_DIRECTORY)\$(NAME_PART).log"

17. VIEW: Generate Listing (Ctrl+7)

Appears in Macro submenu: Yes

This script prints a pdf copy of the source file. In order to not override the normal pdf output, the

script copies the source to a temporary TEX file with the suffix -listing; this file is deleted after the

pdf is created.

mtxrun --autogenerate --script context --autopdf --extra=listing --compact --pretty

--result="$(NAME_PART)-listing" "$(NAME_PART).tex"

18. Fonts: Purge Font Cache (Ctrl+Shift+3)

MkIV generates a cache of OpenType and related tables for each font the first time it is used. The

cache contains, e.g., an abbreviated version of the OpenType tables. When, e.g., a new version of a

25

given font is installed, when that font is otherwise changed, or in certain other instances (e.g., bug

fixes), the cache needs to be emptied and regenerated on a fresh run of MkIV.

Appears in Macro submenu: Yes

mtxrun.exe --script cache --erase

mtxrun --generate

19. Fonts: List Font Info

This produces a list of all the individual fonts belonging to a typeface family. The script below uses a

sample font; replace lmroman with the font-family name of interest.

Appears in Macro submenu: No

mtxrun --script font --list --all lmroman

20. Fonts: List OpenType Features

This lists all of the GSUB and GPOS feature tags in the OpenType tables of a given font. The script

below uses a sample font; replace lmroman12-regular with your font of interest.

Appears in Macro submenu: No

mtxrun.exe --script font --list --info lmroman12-regular

21. Fonts: OpenType Tables – Verbose

This generates the verbose version (ending in .lua) of the OpenType tables. The script below uses a

sample font; replace lmroman12-regular with your font of interest.

Appears in Macro submenu: No

mtxrun --script font --list --info lmroman12-regular

For typeface families you may prefer to specify a pattern, e.g.,

mtxrun --script font --list --info --pattern=lmroman12

22. Fonts: Reload Font Database

This script comes in handy when the font database is incorrect for some reason, or when the script

under Heading 18 above doesn’t appear to work.

Appears in Macro submenu: No

mtxrun --script fonts --reload --force

5.3 The Macro and Run Submenus

From the NppExec Advanced Options dialog, any console script can be made to appear at the bottom

of the submenu Macro. We have configured 14 NppExec scripts to appear there; see Figure 10. Note

the submenu identifier need not be the same as the source console script name!

26

Figure 10 NppExec Scripts and the

Macro Submenu

There are three submenu commands under Macro that don’t come from a console script, but were

“recorded” via the normal Notepad++ macro-recording mechanism:

• Space after TEX Control Sequence (Ctrl+Shift+C)

When invoked at the end of a given TEX control sequence, this macro adds the string ‘{} ’, including a

single word space, to that sequence. At least for paragraph writing, to use a brace pair after a control

sequence is generally better practice than to use a backslash.

• Complete TEX Control Sequence (Ctrl+Shift+D)

This macro is discussed towards the end of Section 6.3.1. It provides a method of word completion

for control sequences, to complement primary function completion.

• Conjunction Swap (Ctrl+Alt+Shift+W)

In the course of editing a three-string expression whose middle string is a conjunction, sometimes

one needs to swap the first and third string; e.g., edit one and two and convert it to two and one.

Double-clicking the middle string and and executing the macro will produce the desired effect

The user can easily record one’s own Notepad++ macros as well!

Note also that the shortcut for invoking the Command Prompt (default shortcut Ctrl+6) occurs under

the Run submenu.

5.4 Configuring Shortcut Mapper

Nearly all shortcuts for Notepad++ are configurable via

Settings – Shortcut Mapper

27

Shortcuts for those NppExec commands that appear in the Macro submenu will be found under the

tab

Shortcut Mapper – Plugin Commands

which is organized by plugin. Shortcut Mapper can handle only two levels of submenus. For a third

level, special treatment is needed; this brings us to the heart of the Notepad++ for CONTEXT system:

the CONTEXT lexer and plugin.

6 The CONTEXT Plugin

6.1 Components of the Plugin

The CONTEXT plugin features the following three mechanisms:

1. The Lexer

2. Autocompletion and Calltips

3. Tags, Templates, and Keys

We now go over these in some detail.

6.2 Configuring Keyword Classes: Style Configurator and ConTeXt.xml

In the course of Section 4.3, we already discussed the keyword classes of the CONTEXT lexer, as well

as their role in semantic highlighting. There are 14 classes, each of whose entries are currently

generated via a Python script. The highlighting settings for each class may be managed through

Style Configurator; some classes also feature a field where one may add user-defined keywords to the

desired class as needed.

ConTeXt.xml is organized as follows:

1. Language

This follows the structure of the standard langs.xml that comes with Notepad++. A snippet:

<Languages>

<Language commentEnd="" commentLine="%" commentStart="" ext="tex" name="ConTeXt">

<!-- luatex -->

<Keywords name="0">

\Uchar [etc.]

</Keywords>

</Language>

</Languages>

2. Style

This follows the structure of the standard stylers.xml that comes with Notepad++. A snippet:

<LexerStyles>

<LexerType desc="ConTeXt" excluded="no" ext="" name="ConTeXt">

28

<WordsStyle bgColor="D3D5C5" fgColor="324140" fontName="ALM Fixed" fontSize="14"

fontStyle="0" name="DEFAULT" nesting="0" styleID="0" />

[etc.]

</LexerType>

</LexerStyles>

User-defined keywords set in Style Configurator (see Figure 3) are saved within <WordsStyle>. Here

is an example (much abbreviated):

<WordsStyle name="STYLE">\emph</WordsStyle>

This adds the control sequence \emph (at the time of this writing, missing from the CONTEXT autocom-

pletion sources – see Section 3.1, Heading 11) to the keyword class STYLE.

We have tried to make the order of classes as useful as possible. Note that the syntax coloring of each

class takes precedence over the one that is next down the list. Suppose one defines the following

\start|\stop<command> environment:

\STARTTEST \STOPTEST

If used often or in multiple documents, one should place these into the PRIVATE keyword class: either

by directly editing ConTeXt.xml – in which case they will appear as Default Keywords – or by using

the User-defined keywords field in Style Configurator. Then one can place \STARTTEST in the START

OPEN class, and \STOPTEST in the STOP CLOSE class. The result is that, because PRIVATE is prior to the

two folding classes, you will get keyword folding with the semantic highlighting of PRIVATE.

In the default ConTeXt.xml that ships with Notepad++ for CONTEXT, the commands listed for the class

PRIVATE are highlights that the first author has found useful for defining style elements: Given some

text tagged with such an element, its style will be converted to an xml tag.22 The macro definitions of

these highlights are included in ConTeXt.xml for illustration purposes and have been commented.23

All lexer keywords and styles are specified in

/Program Files (x86)/Notepad++/plugins/Config/ConTeXt.xml

6.2.1 A Trick

If one takes a look under

Settings – Style Configurator – Language:

you will see that ConTeXt and other external lexers appear at the bottom of the Language: list.

If you wish to spend significant time to develop your own theme, or add lots of user-defined keywords

to the relevant classes (see Section 4.3), itmay be convenient (but is by no means necessary) to have

it appear alphabetically in that list (to avoid having to scroll to the bottom of the Language: list too

22 Note that normal styling options in CONTEXT are ignored when CONTEXT output is set to xml. For example: \emph{text} will

not be tagged and will show no emphasis in xhtml output. Using \emphasis{text}, on the other hand, will generate a tag for

emphasis, which may then be configured for, e.g., css.
23 A good practice is to make a file such as highlights.tex and place it in the private branch of your CONTEXT tree, e.g.,

/ConTeXt/tex/texmf-project/tex/aliases

or wherever else you choose. (Always remember to refresh the filename database!)

29

often). In that case you can copy the <LexerType> tag from ConTeXt.xml to its natural alphabetical

location in

/Roaming/Notepad++/stylers.xml

Now a second presentation of the ConTeXt lexer will appear alphabetically in the Language: list.

Notepad++ will use this as default, so CONTEXT styles will now be governed by

Style Configurator – Default theme: (stylers.xml)

When one is done with development, it may be convenient (but is by no means necessary) to copy the

<LexerType> for CONTEXT from stylers.xml back to ConTeXt.xml, then delete it from stylers.xml.

6.3 Configuring Autocompletion and Calltips: context.xml

Notepad++ has native autocompletion capabilities. However, it was not designed with TEX-style lan-

guages in mind; working with the backslash \ has limitations. Therefore a decision was made to

reimplement autocompletion for the CONTEXT plugin. Both function completion and word completion

are supported. Native Notepad++ offers a choice of function completion only, word completion only,

or both; currently the plugin supports only both. Since functions in CONTEXT all begin with a backslash,

and normal words generally do not, there is little-to-no ambiguity between words and functions.24

After typing the first three characters of a CONTEXT command (= function) or a previously used word,

a popup will appear that will give a list of possible completions, from a subset of the list of official

control sequences (in the case of function completion), or from a list of previously used words that

begin with those three characters (in the case of word completion). See Figure 11.

Figure 11 Word and Function Autocompletion

Many CONTEXT control sequences support optional arguments specified within a pair of brackets, e.g.,

big in \blank[big], or offset=none in \framed[offset=none]. It is virtually impossible to remember

the bewildering array of options that come with thousands of control sequences, and having to consult

some online documentation or the commands manual setup-en.pdf takes time. Oftentimes a post-

function-completion indicator, a so-called “calltip”, is enough to give a hint or a reminder about the

options available for a given command.

Once such an official command is typed with the aid of function completion and immediately followed

by a left bracket [(the “trigger”), a calltip appears. The native Notepad++ calltip mechanism is

one-dimensional: Once the calltip pertaining to some language appears following autocompletion and

the relevant trigger, it shows a single line of information about the function. Any additional line of

information must be selected by scrolling with a mouse. For viewing what is often a wide array of

CONTEXT options this can be very inefficient. The CONTEXT-plugin implementation is two-dimensional:

After the calltip triggered, it appears as a pane in columns; see Figure 12.

24 That said, a final decision as to whether or not to provide the ability to turn off function or word autocompletion has yet to be

made.

30

Figure 12 Calltips

The list of official control sequences is found, and the calltip settings are configured, in the file

/Program Files (x86)/Notepad++/plugins/APIs/context.xml

The file context.xml is generated automatically from the latest CONTEXT sources via a Python script;

see Section 3.1, Heading 11. One generally does not need to edit the autocompletion information.

However the <Environment> tag at the beginning of the file does contain information that one may

edit to configure the appearance of the calltips. Here are the default settings:

<Environment additionalWordChar="" calltipBackColor="0xF0F0F0"

calltipFontName="consolas" calltipFontSize="9" calltipForeColor="0x101010"

columns="2" ignoreCase="no" macroValueOnSingleLine="yes" maxLineLength="70"

sortMacroValues="no" startFunc="" startFunc1="[" startFunc2="{"

startFunc3="(" stopFunc="" stopFunc1="]" stopFunc2="}" stopFunc3=")"

thresholdNrOfRows="20" toplines="1" widthColumnSep="2"/>

The current selection of available information about any given command reflects the limitations of the

sources: As detail is added to the CONTEXT sources for autocompletion, more calltip information will

become available to the user in future versions of context.xml.25

6.3.1 Function Completion for Residual and User-Defined Commands

There is a significant residue of official commands not captured by the Python scripts, e.g., \crlf,

\endgraf, \emph, \paperwidth, \start, and \stop. In addition, there are those commands which are

locally defined by the user. To enable semantic highlighting support for commands not generated by

the scripts, one has to add them via Style Configurator to the User-defined keywords field for one of

the ConTeXt classes (see Section 6.2,Heading 2). However, since user-defined keywords and locally

defined commands are not included in context.xml, there is still no function completion available for

them. Furthermore, word completion supports only alphabetic and numeric strings. This leaves user-

defined and local commands in something of a “no-man’s land” with respect to autocompletion.

In order to obtain function-completion for a given user-defined keyword or local command, it must be

included in context-user.xml; this file follows the syntax of APIs/context.xml. Here is an extract

from context-user.xml (minus the <Environment> tag):

25 In a future version we intend to add the ability to select parameters for each supported command.

31

<?xml version="1.0" encoding="Windows-1252"?>

<NotepadPlus>

<AutoComplete language="ConTeXt">

<KeyWord ctxname="\booktitle"/>

<KeyWord ctxname="\crlf"/>

<KeyWord ctxname="\emph"/>

<KeyWord ctxname="\emphasis"/>

<KeyWord ctxname="\endgraf"/>

<KeyWord ctxname="\important"/>

<KeyWord ctxname="\paperwidth"/>

<KeyWord ctxname="\quran"/>

<KeyWord ctxname="\SCITE"/>

<KeyWord ctxname="\start"/>

<KeyWord ctxname="\stop"/>

<!-- <KeyWord ctxname=""/> -->

</AutoComplete>

</NotepadPlus>

This sample includes an alphabetically-sorted26 list of commands taken from the version of ConTeXt.xml

that ships with Notepad++ for CONTEXT: PRIVATE class keywords, set within the <Keywords name="6">

tag; and user-defined keywords, set within the <WordsStyle> tag (see Section 6.2).

In context-user.xml, advanced users may also configure calltip information for private macros; just

follow the syntax of APIs/context.xml. There is an extensive sample provided in the shipped file:

See the attributes set within the tag <KeyWord ctxname="\PRIVATEMACROb">. This functionality will

be useful for, e.g., writers of add-on modules for CONTEXT or other macros meant for distribution.

In order to obtain word completion for, e.g., very short-term or scratch private control sequences,

or for when one is feeling too lazy to add one’s definitions to context-user.xml, one may use the

following workaround. For a previously defined or used \mycommand, type the first three letters of

that command: myc. The word-completion drop-down menu will appear: Click on the desired string,

then execute the shortcut for the recorder macro

Macro – Complete TeX Control Sequence (Ctrl+Shift+D)

This will prefix a backslash to mycommand and return the cursor to the end of the control sequence.

See also Section 5.3.

6.4 Configuring Markup Tags, Template Tags, and Keys: ConTeXt.ini

As mentioned in Section 1.2, the CONTEXTMkIV interface has developed considerably in the direction

of a pure markup syntax, which demands the tagging of text with either two commands – these usually

take the form of a pair of \start|\stop<command> sequences – or a pair of braces. Autocompletion

of one command at a time for purposes of tagging is still tedious. The CONTEXT plugin features a user-

configurable markup, template, and key system to make the handling of markup more accessible and

efficient.27

Configuration of markup tags, templates, and keys are setup in

26 Under TextFX – TextFX Tools the user will find some ready-made functions useful for sorting a selected set of lines.
27 The authors again acknowledge the developer of WebEdit: His plugin was a major inspiration for the approach taken by the

CONTEXT plugin; see Section 1.2.

32

Roaming/Notepad++/plugins/config/ConTeXt.ini

Let us now look at how each of these three subsystems is configured.

6.4.1 Markup

The CONTEXT plugin displays the organization of markup tags in ConTeXt.ini as a system of submenus

with support for two levels before ConTeXt (Level 1). For example:

Plugins – ConTeXt – <Level 2 Name 1> – <Level 3 Name 1>

– <Level 2 Name 1> – <Level 3 Name 2>

– <Level 2 Name 2> – <Level 3 Name 1>

– <Level 2 Name 2> – <Level 3 Name 2>

– <Level 2 Name 2> – <Level 3 Name 3>

In ConTeXt.ini we have the following default structure:

[Markup]

[Project]

[Document]

[Style]

[Highlights]

[Private]

[XML/HTML]

[MarkupEnd]

This specifies six Level-2 menus (of course you can add, subtract, or reconfigure). The markup tags

will be specified at Level-3. For example:

[Project]

Project=\startproject%n|%n\stopproject%n

Product=\startproduct%n|%n\stopproduct

Component=\startcomponent%n|%n\stopcomponent

Environment=\startenvironment%n|%n\stopenvironment

TeXpage=\startTEXpage%n|%n\stopTEXpage

Text=\starttext%n|%n\stoptext

The result is what you see in Figure 13.

Figure 13 Organization of Markup-Tag Submenus

33

Now type some text:

Here is some text.

Select the above text, then go to and click on

Plugins – ConTeXt – Project – Text

This results in the following:

\starttext

Here is some text.

\stoptext

The above example illustrates the basic principle governing the markup-tags subsystem. The syntax

of the markup tags is as follows:

; Syntax: <Item name>=<Left text>|<Right text>

; %n insert new line % n insert %n

The vertical bar | marks the position of the content to be wrapped by the <Left text> and <Right

text>. In our example:

Project=\startproject%n|%n\stopproject%n

To open the configuration file ConTeXt.ini for editing, go to

ConTeXt – Plugins – Edit config (Alt+Shift+L)

(Like most shortcuts, this one can be configured via Shortcut Mapper; see Section 5.4.)

After editing, load the configuration file to update the plugin menus and invoked markup tags:

ConTeXt – Plugins – Load config (Alt+L)

For fine organization of markup tags, basic subdivision of Level-3 submenus is supported: Just place

three dashes --- where you want a dividing line to appear in the menu, e.g.,

Single Quotes=\quote{|}

Align Middle=\startalignment[middle]%n|%n\stopalignment

See Figure 14. There are three dividing lines:

• one above Block Quote;

• one above Align Middle and below Single Quotes; and

• one above Text Braces and below Align Left.

Figure 14 Dividing Lines in Submenus

34

In the default ConTeXt.ini that ships withNotepad++ for CONTEXT, the commands listed under [Private]

are private macros by the first author; the definitions for these are double commented. These macros

are included for illustration purposes only; the user should replace them with one’s own private com-

mands.

6.4.2 Configuring the Right-Click Menu

Although one may go to Plugins – ConTeXt each time a markup tag is desired, it is often convenient

to skip this step and to instead use the Notepad++ right-click menu mechanism. Settings for this

mechanism are configured in a file entitled, unhappily for CONTEXT users, contextMenu.xml. In most

cases a user will manually add the names of menu items to the configuration file, for example:28

<Item PluginEntryName="TextFX Characters"

PluginCommandItemName="Proper Case"

ItemNameAs="Proper Case" />

However, for the CONTEXT plugin things are not so simple; this is, in part, because the right-click mech-

anism wasn’t designed for things like our Level-3 submenus. So the CONTEXT plugin has been designed

to, upon request, populate contextMenu.xml using id codes internally generated to Notepad++, for

example:

<Item FolderName="Project"

id="23004"

ItemNameAs="Text"

User="" />

To copy the Level-2 and Level-3 submenus to the right-click menu, go to

Plugins – ConTeXt – Update right-click menu

Unlike the case with the loading of ConTeXt.ini after it is edited (Load config), one has to restart

Notepad++ in order to complete update of the right-click menu. Once updated, the submenu subsys-

tem will appear upon any right click (Shift+F10 is the usual system shortcut); see Figure 15.

Figure 15 The Right-Click Menu

28 For more information about the Notepad++ right-click menu mechanism and its configuration, see

http://docs.notepad-plus-plus.org/index.php/Context_Menu.

35

Once setup, select some text, right click, then choose the desired markup tag with which to wrap that

text.

The User attribute (empty in the above snippet) allows the user to give any right-click item a name

different from the default name featured by the Plugins menu. Hence there is the option to edit

contextMenu.xml manually. But update through the plugin first! Then make your changes, save, and

restart Notepad++.

6.4.3 Keys

The default submenu configuration that ships with Notepad++ for CONTEXT features over 80 markup

tags, and the user is free to add many more. Some tags will be used frequently; it would be convenient

to have shortcuts for them. Unfortunately, Shortcut Mapper is not designed to handle Level-3 sub-

menus. Misfortune in this case gave way to the opportunity to do something better: Second author

Luigi Scarso has implemented a key-based shortcut system for our CONTEXT plugin.
29

In ConTeXt.ini one sets a one-, two-, or three-character key within a pair of parenthesis and imme-

diately prior to the name of the markup tag of interest, for example:

[Style]

(em)Emphasize=\emph{|}

(ty)Type=\type{|}

To see the available keys, go to

Plugins – ConTeXt – Insert ConTeXt macro (Ctrl+-)

One will normally invoke this via the shortcut Ctrl+-. A popup window will appear with the full

list of markup tags. A list of keys previously set in ConTeXt.ini is displayed in the left column; see

Figure 16.

Figure 16 The User’s Macros and Keys Popup

Opening the key window triggers a timer: To wrap some selected <text> in a markup tag, now quickly

type the key that has been set for that macro, e.g., em for \emph{<text>}. The available settings for

29 This is inspired, in part, by the “mnemonics” system used by Emacs.

36

the timer and the popup window may be configured under [CommandsSetup], located at the first line

of ConTeXt.ini:

[CommandsSetup]

usermacro:elapse=400

um:elapse_shift=500

um:display_rows=100

um:window_width=280

um:window_height=1400

The two elapse variables are in milliseconds. The second variable, um:elapse_shift gives the time

lapse for keys that require a Shift, e.g., capital letters. One can fine tune the values of the elapse

variables until they are in sync with one’s typing speed. The third variable controls the number of

rows displayed in the popup: The current maximum value is 100.

Note that um:window_height overrides um:display_rows. If one prefers to workwith um:display_rows

then the user should comment out the um:window_height line.

The popup window may also be resized manually by dragging an edge or corner.

Finally, one can invoke a macro directly from the popup window: Just double click on any row that

corresponds to a markup tag and it will wrap the selected text with that tag.

6.4.4 Templates

The CONTEXT plugin supports one more way to enter markup or other code: templates. In ConTeXt.ini

these are configured after [Templates]. For example:

[Templates]

item2=\startitemize%n\startitem[]%n|%n\stopitem %n

\startitem[]%n%n\stopitem %n\stopitemize

In one’s document, go to a new line and type the keyword item2. Then choose

Plugins – ConTeXt – Replace tags (Alt+\)

As usual, one normally just invokes the shortcut. This will result in

\startitemize

\startitem[]

\stopitem

\startitem[]

\stopitem

\stopitemize

with the cursor placed on the line between the first \startitem[]–\stopitem pair. Replacing the

keyword item7 will produce seven \start|\stopitem tags.

The template system is perfect for things like tables. For example, if one types and replaces the

keyword TABLE22 – See ConTeXt.ini – the result will be

\placetable{}

37

{\bTABLE

\bTR \bTD \eTD \bTD \eTD \eTR

\bTR \bTD \eTD \bTD \eTD \eTR

\eTABLE}

with the cursor placed between the first \bTD–\eTD pair.

7 Note on Bidirectional Editing and Scintilla

As mentioned in Section 2.2, one of the distinguishing characteristics of Notepad++ in comparison

with other Scintilla-based editors is its support of global bidirectional editing. This means that one

can set the global direction of the editor from LTR to RTL and back; see

View – Text Direction RTL

View – Text Direction LTR

When RTL reading order is chosen, one can type and edit, e.g., Arabic and Hebrew text normally.30

Note the following significant but non-critical limitations:

• Notepad++ support for global directionality applies to the entire editing area and to all editing tabs.

When applied, every open document will appear as either global RTL or global LTR.

• For each tab, global directionality applies to the entire document, not line by line.31 That is, every line

or paragraph will obey the global direction.

Moving along: As long as one works with some script whose directionality matches the global direc-

tion, global RTL or LTR reading order (‘order’ for short) each behaves as expected. When one mixes

local RTL and LTR text within the same line, however, then challenges arise. See Figure 17: Visually,

the mixed-direction text in global LTR order, and the same text in global RTL order, look exactly as

they would in any editor that fully supports bidi (such as MS Notepad). But looks are deceiving. In

general: When in global LTR order, typed RTL text will look normal but one cannot visually edit it;

when in global RTL order, typed LTR text will look normal but one cannot visually edit it. For example,

if one visually selects, copies, and pastes some RTL text while in global LTR order, the pasted text will

generally not look as one expects. If one starts typing in the middle of an RTL word while in global

LTR order, what one types will generally not appear where one expects it to. See Figure 18: If, from

global LTR order, one double-clicks in the middle of the word ‘ وه ‎’ to select it, one sees the selection
background color doing something odd: What the editor actually selects is the word ‘ ناحتما ‎’. The RTL

text that appears on the screen does not match what the editor is doing because Scintilla can only

process the text in one direction at a time. If one switches to global RTL and visually selects the same

word, Scintilla behaves as expected.

Figure 17 Appearance of Bidi in the CONTEXT Lexer: Global LTR (left) Global RTL (right)

30 By default (Shortcut Mapper, shortcuts.xml) we use Alt+X to switch to RTL, Alt+Z to switch to LTR. These direction options

are also supported in the default right-click menu (contextMenu.xml). In Microsoft Notepad, what Notepad++ calls Text

Direction RTL is called Right to left Reading order.
31 Note that we are using ‘line’ in the editor sense. Thus a typeset paragraph may be represented as a single line in the editor,

separated from other such lines by whitespace. See also Section 2.4.2.

38

Figure 18 Selecting an RTL Word in the CONTEXT Lexer: Global LTR (left) Global RTL (right)

But this is not the whole story. An oddity that one finds, not only in Notepad++ but in SciTE as well,

is that not all lexers behave exactly the same. There are actually two modes of Scintilla bidirectional

behavior. The first (and apparently the most common among Notepad++ lexers) is the one described

just above: Visually, mixed-direction text looks correct with either global RTL or LTR reading order

activated, but the only text that can be edited naturally is that whose local directionality matches the

global direction of Notepad++. But if one switches the language to, e.g., Lua, things look significantly

different. See Figure 19: In global LTR, each individual continuous RTL string (such as a word) looks

and reads RTL, but a concatenation of continuous RTL strings reads LTR. Similarly: In global RTL,

each individual continuous LTR string looks and reads LTR, but a concatenation of continuous RTL

strings reads RTL.

Figure 19 Appearance of Bidi in the Lua Lexer: Global LTR (left) Global RTL (right)

This apparent oddity brings a significant benefit: Visual selection of any complete word or continuous

text string by double-click now matches the editor selection! See Figure 20: A double-click to select

the RTL string ‘ وه ‎’ now works as expected in global LTR order. Similarly, a double-click to select an
LTR string now works as expected in global RTL order; see Figure 21, which compares the behavior

of the CONTEXT lexer (left) and that of the Lua lexer (right). Note that this does not affect bidirec-

tionality within a word or continuous string: Within this mode of Scintilla, one can select an entire

word regardless of whether it is RTL or LTR, but one cannot naturally select, type, or edit individual

characters within that word.

Figure 20 Selecting an RTL Word in the Lua Lexer: Global LTR (left) Global RTL (right)

Figure 21 Selecting an LTR Word in CONTEXT (left) and Lua (right): Global RTL

Despite this persistent limitation: From the perspective of efficient editing, it is arguable that the

second mode of Scintilla behavior – where a concatenation of continuous RTL (LTR) strings reads LTR

(RTL) while each individual string apears RTL (LTR) – is more useful than the first mode – where a pure

visual bidirectionality is maintained without the ability to select individual words whose directionality

is opposite to the global reading order. At this stage, the authors have yet to identify the exact “trigger”

which governs whether a lexer will adopt the first Scintilla mode or the second. Once that is identified,

we may configure the lexer to adopt the second behavior, provide a choice to the user, or embark upon

some other, creative, protocol.32

A related question is whether or not Notepad++ or the CONTEXT lexer can be extended via, e.g., a Lua

extension, to fully support bidirectional editing in the proper manner. Of course, the best solution

would be for the Scintilla development team to add bidirectional support to Scintilla directly.

32 The original CONTEXT UDL – see Section 1.2 – uses the second mode, whereas our current lexer uses the first. In SciTE (LTR

global text direction only), the TEX lexer also uses the second mode, whereas the MetaPost lexer uses the first.

39

Acknowledgments

The authors gratefully acknowledge the support of Alan Braslau, Hans Hagen, and Wolfgang Schuster.

Their assistance has been critical for the development of this project.

References

Bringhurst, R. (2008). The Elements of Typographic Style, Version 3.2. Hartley & Marks, Publishers.

(p. 17)

Sarkar, A. (2015). The impact of syntax colouring on program comprehension. In The impact of

syntax colouring on program comprehension. Proceedings of the 26th Annual Conference of

the Psychology of Programming Interest Group (PPIG 2015). Author. (p. 13)

The Authors

author Idris Samawi Hamid, Professor

email ishamid@colostate.edu

affiliation Department of Philosophy

Colorado State University

The Oriental TEX Project

author Luigi Scarso

email luigi.scarso@gmail.com

affiliation The ConTEXt Development Team

The LuaTEX Team

version March 15, 2018

