
Developing Scientific Applications
Using Eclipse and the
Parallel Tools Platform

Greg Watson, IBM
g.watson@computer.org

Beth Tibbitts, IBM
tibbitts@us.ibm.com

Portions of this material are supported by or based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under its Agreement No. HR0011-07-9-0002, the
United States Department of Energy under Contract No. DE-FG02-06ER25752, and the Blue
Waters sustained petascale computing project, which is supported by the National Science
Foundation under award number OCI 07-25070.

Jay Alameda, NCSA
jalameda@ncsa.uiuc.edu

Jeff Overbey, UIUC
overbey2@illinois.edu

Tutorial Outline
Time (Tentative!) Module Outcomes Presenter

8:30-8:35 1. Overview of Eclipse
 and PTP

  Introduction to Eclipse/PTP Greg

8:35-8:50 2. Installation   Prerequisites
  Installation

Greg

 8:50-9:20 3. Working with C/C++   Eclipse basics
  Creating a new project
  Building and launching

Beth

9:20-10:50 4. Working with MPI   CVS, Makefiles, autoconf, PLDT MPI tools
  Resource Managers
  Launching a parallel application

Jay

10:00 - 10:30 Break

10:50-11:10 5. Fortran   Photran overview
  MPI project creation
  Differences from CDT

Jeff

11:10-11:30 6. Debugging   Introduction to parallel debugging
  Debugging an MPI program

Greg

11:30 – 11:50 7. Advanced Features   Perspectives, Views, Preferences, Team
  Refactoring/Search (Fortran & C/C++)
  PLDT (MPI, OpenMP, UPC tools)
  Remote Development

Jeff/Beth

11:50- 12:00 8. Other Tools, Wrapup   NCSA HPC WB, Perf and other Tools,
website, mailing lists, future features

Jay/Beth

1-0 Module 1

Module 1: Introduction

 Objective
 To introduce the Eclipse platform and PTP

 Contents
 What is Eclipse?
 What is PTP?

1-1 Module 1

What is Eclipse?

 A vendor-neutral open-source workbench for
multi-language development

 A extensible platform for tool integration
 Plug-in based framework to create, integrate

and utilize software tools

1-2 Module 1

Eclipse Platform

 Core frameworks and services with which all
plug-in extensions are created

 Represents the common facilities required by
most tool builders:
 Workbench user interface
 Project model for resource management
 Portable user interface libraries (SWT and JFace)
 Automatic resource delta management for

incremental compilers and builders
 Language-independent debug infrastructure
 Distributed multi-user versioned resource

management (CVS supported in base install)
 Dynamic update/install service

1-3 Module 1

Plug-ins

  Java Development Tools (JDT)
  Plug-in Development Environment (PDE)
  C/C++ Development Tools (CDT)
  Parallel Tools Platform (PTP)
  Fortran Development Tools (Photran)
  Test and Performance Tools Platform (TPTP)
  Business Intelligence and Reporting Tools (BIRT)
  Web Tools Platform (WTP)
  Data Tools Platform (DTP)
  Device Software Development Platform (DSDP)
  Many more…

1-4

Launching & Monitoring

Eclipse Parallel Tools Platform (PTP)

Debugging

Coding & Analysis

Performance Tuning

Module 1

1-5 Module 1

Parallel Tools Platform (PTP)

  The Parallel Tools Platform aims to provide a highly
integrated environment specifically designed for parallel
application development

  Features include:
  An integrated development environment (IDE) that

supports a wide range of parallel architectures and runtime
systems

  A scalable parallel debugger
  Parallel programming tools

(MPI/OpenMP)
  Support for the integration

of parallel tools
  An environment that simplifies the

end-user interaction with parallel systems
  http://www.eclipse.org/ptp

Module 2: Installation

 Objective
 To learn how to install Eclipse and PTP

 Contents
 System Prerequisites
 Software Prerequisites
 Eclipse Installation
 PTP Installation

Module 2 2-0

About PTP Installation

 PTP 3.0 isn’t “official” yet. Planned for late Oct.

 Note: up-to-date info on installing PTP and its
pre-reqs is available from the release notes:

http://wiki.eclipse.org/PTP/release_notes/3.0

 This information may supersede these slides

Module 2 2-1

System Prerequisites

 Local system (running Eclipse)
 Linux (just about any version)
 MacOSX (Leopard)
 Windows (XP on)

 Remote system (running/debugging
application)
 Must be supported by a resource manager
 Open MPI 1.2+
 MPICH 2
 IBM PE & LoadLeveler (AIX or Linux)
 SLURM (Linux)

Module 2 2-2

Software Prerequisites

 Java (1.5 or later)
 Cygwin or MinGW (for local development on

Windows)
 Unix make or equivalent
 Supported compilers (gcc, gfortran, Intel, etc.)
 Gdb for debugging (or a gdb-like interface)
 Gcc for building the debugger and SLURM

proxies from source
 IBM C for building the PE/LoadLeveler proxies

from source

Module 2 2-3

Java Prerequisite

 Eclipse requires Sun or IBM versions of Java
 Only need Java runtime environment (JRE)
 Java 1.5 is the same as JRE 5.0
 The GNU Java Compiler (GCJ), which comes

standard on Linux, will not work!

Module 2 2-4

Eclipse and PTP Installation

  Eclipse is installed in two steps
  First, the base Eclipse package is downloaded and

installed
  Additional functionality is obtained by adding

‘features’
  This can be done via an `update site’ that

automatically downloads and installs the features
  Update site archives can be downloaded to install

features offline.

  PTP requires the following Eclipse features
  C/C++ Development Tools (CDT)
  Remote Systems Explorer (RSE) end-user runtime

Module 2 2-5

Eclipse Packages

 Eclipse is available in a number of different
packages for different kinds of development

 Two packages are more relevant for HPC:
 Eclipse Classic

 The full software development kit (SDK), including
Java and Plug-in development tools

 Eclipse IDE for C/C++ developers
 Base Eclipse distribution
 Base C/C++ Development Tools (CDT) (does not

include UPC)

 Either is ideal for PTP use

Module 2 2-6

Eclipse Installation

 The current version of Eclipse is 3.5 (Galileo)
 PTP 3.0 will only work with this version

 Eclipse is downloaded as a single zip or
gzipped tar file from
http://eclipse.org/downloads

 You must download the correct version to suit
your local environment
 Must have correct operating system version
 Must have correct window system version

 Unzipping or untarring this file creates a
directory containing the main executable

Module 2 2-7

Platform Differences

 Single button mouse (e.g. MacBook)
 Use Control-click for right mouse / context menu

 Context-sensitive help key differences
 Windows: use F1 key
 Linux: use Shift-F1 keys
 MacOS X

 Full keyboard, use Help key
 MacBooks or aluminum keyboard, create a key binding

for Dynamic Help to any key you want

 Accessing preferences
 Windows & Linux: WindowPreferences…
 MacOS X: EclipsePreferences…

Module 2 2-8

Starting Eclipse
  Linux

  From a terminal window, enter

  MacOS X
  From finder, open the eclipse folder where you installed
 Double-click on the Eclipse application
 Or from a terminal window

  Windows
 Open the eclipse folder
 Double-click on the eclipse executable

  Accept default workspace when asked
  Select workbench icon from welcome page

<eclipse_installation>/eclipse/eclipse &

Module 2 2-9

Specifying A Workspace

The prompt can be
turned off

 Eclipse prompts for a workspace location at
startup time

 The workspace contains all user-defined data
  Projects and resources such as folders and files

Module 2 2-10

Eclipse Welcome Page

 Displayed when Eclipse is run for the first time

Select “Go to the workbench”

Module 2 2-11

Adding Features

  New functionality is added to Eclipse using features
  Features are obtained and installed from an update site

(like a web site)
  Features can also be installed from a local copy of the

update site (which can be zipped)

Module 2 2-12

Installing Eclipse Features
from an Update Site

  Three types of update sites
 Remote - download and install from remote server
  Local - install from local directory
 Archived - a local site packaged as a zip or jar file

  Eclipse 3.5 comes preconfigured with a link to the Galileo
Update Site
  This is a remote site that contains a large number of official

features
 Galileo projects are guaranteed to work with Eclipse 3.5

  Many other sites offer Eclipse features
  Use at own risk

Module 2 2-13

Installing from an Update Site
  From the Help menu, choose

 Install New Software…

Module 2 2-14

Galileo Update Site
  The Galileo site comes

already configured with Eclipse

  For example, some of the
contents of the Galileo site:

  You can get C/C++ Dev. Tools
from the Galileo site, but…

  Basic tools, does not include UPC
  More complete CDT install

shown later
  PTP 3.0 needs CDT 6.0.1,

not available yet

Module 2 2-15

Installation: RSE

 The RSE End-User Runtime should be installed
from the Galileo update site

Module 2 2-16

Installation: CDT
  PTP 3.0 needs CDT 6.0.1

  Update site will contain latest version

  Update site: http://download.eclipse.org/tools/cdt/releases/galileo

  Install any features you want
  Omit the testing feature:

  If you want UPC, include:

  CDT 6.0.1 is due at the end of Sept

Module 2 2-17

Installing PTP
  In Work with type the PTP update site URL:

http://download.eclipse.org/tools/ptp/releases/galileo/
  Click Add...
  Enter a name (optional)

 e.g. “PTP 3.0”
  Click OK and the list of features

on the update site will be
populated

  Select all the components you require
  Click Next>

  See PTP release notes for most
recent info on installing 3.0

Module 2 2-18

Installing PTP (2)
  You will be prompted to accept the License terms
  Accept the License terms
  Click Finish

  Restart Eclipse when prompted

Module 2 2-19

Restarting Eclipse

Yellow
indicates new
features just
installed

  Welcome page
informs you of
new features
installed

  Select
workbench icon
to go to
workbench

Go to
workbench

Module 2 2-20

Installing Additional PTP Components

 PTP has a number of additional components
depending on the installation
 Scalable Debug Manager (SDM) – required for all

platforms to support debugging
 PE and LoadLeveler proxy – IBM systems only
 SLURM proxy – systems using the SLURM resource

manager

 Installation of these components is beyond the
scope of the tutorial

 See the release notes for details of installing
these components

2-21 Module 2

Module 3: Working with C/C++

 Objective
 Learn how to use Eclipse to develop parallel programs
 Learn how to run and monitor a parallel program

 Contents
 Brief introduction to the C/C++ Development Tools
 Create a simple application
 Learn to launch a parallel job and view it via the PTP

Runtime Perspective

3-0 Module 3

Installation recap

 Download and unzip/untar eclipse
 Use Help >Install new software to get

 CDT for C/C++ tools
 PTP and related tools for Parallel application work
 Build PTP binary on target machine (local or remote)

 Launch eclipse!
Run the ‘eclipse’ executable, from icon or from
command line

3-1 Module 3

Workbench

  The Workbench
represents the desktop
development environment
  It contains a set of tools

for resource management
  It provides a common

way of navigating through
the resources

  Multiple workbenches can
be opened at the same
time

3-2 Module 3

Workbench Components

 A Workbench contains perspectives
 A Perspective contains views and editors

views

editor

perspective

3-3 Module 3

Perspectives

 Perspectives define the layout of views in the
Workbench

 They are task oriented, i.e. they contain
specific views for doing certain tasks:
 There is a Resource Perspective for manipulating

resources
 C/C++ Perspective for manipulating compiled code
 Debug Perspective for debugging applications

  You can easily switch between perspectives

3-4 Module 3

Switching Perspectives

 You can switch
Perspectives by:

 Choosing the
WindowOpen
Perspective menu
option

 Clicking on the
Open Perspective
button

 Clicking on a
perspective shortcut
button

3-5 Module 3

Available Perspectives

 By default, certain
perspectives are available
in the Workbench

 We’ll use:
 C/C++
 PTP Runtime
 PTP Debug

Window
Open Perspective

3-6 Module 3

Views

 The workbench window is
divided up into Views

 The main purpose of a view is:
 To provide alternative ways of presenting information
 For navigation
 For editing and modifying information

 Views can have their own menus and toolbars
 Items available in menus and toolbars are

available only in that view
 Menu actions only

apply to the view

 Views can be resized

view

view view

3-7 Module 3

Stacked Views

 Stacked views appear as tabs
 Selecting a tab brings that view to the

foreground

3-8 Module 3

Help

  Access help
  HelpHelp Contents
  HelpSearch
  HelpDynamic Help

  Help Contents provides
detailed help on different
Eclipse features

  Search allows you to
search for help locally, or
using Google or the Eclipse
web site

  Dynamic Help shows help
related to the current
context (perspective, view,
etc.)

3-9 Module 3

Switch to C/C++ Perspective
 Only needed if

you’re not
already in the
perspective

 What Perspective
 am in in?
 See Title Bar

3-10 Module 3

Project Explorer View

 Represents user’s data
 It is a set of user defined

resources
 Files
 Folders
 Projects

 Collections of files and
folders

 Plus meta-data

 Resources are visible in
the Project Explorer View

3-11 Module 3

Editors

  An editor for a resource (e.g. a file)
opens when you double-click on
a resource

  The type of editor depends on the type of the resource
  .c files are opened with the C/C++ editor
  Some editors do not just edit raw text

  When an editor opens on a resource, it stays open across
different perspectives

  An active editor contains menus and toolbars specific to that
editor

  When you change a resource, an asterisk on the editor’s
title bar indicates unsaved changes

editor

3-12 Module 3

Source Code Editors

  A source code editor is a
special type of editor for
manipulating source
code

  Language features are
highlighted

  Marker bars for showing
  Breakpoints
  Errors/warnings
  Tasks

  Location bar for
navigating to interesting
features

Icons:

3-13 Module 3

Preferences
  Eclipse Preferences allow customization of almost everything

 Open
WindowPreferences…
 C/C++ preferences allow many
 options

  Code formatting
 settings
 (“Code Style”)
 shown here

3-14 Module 3

Creating a C/C++ Application

Steps:
 Create a new C project
 Edit source code
 Save and build

3-15 Module 3

New C Project Wizard

Create a new MPI project
  FileNewC Project

(see prev. slide)
  Name the project

‘MyHelloProject’
  Under Project types, under

Executable, select Hello
World ANSI C Project
 (no makefile req’d)
 and hit Next

  On Basic Settings page,
fill in information for your
new project (Author
name etc.) and hit Next

3-16 Module 3

This is a
“Managed Build”
project

Makefile project;
provide your
own makefile

  Open the project properties
by right-mouse clicking on
project and select
Properties

  Open C/C++ Build
  Select Settings
  Select C Compiler to change

compiler settings
  Select C Linker to change

linker settings
  It’s also possible to change

compiler/linker arguments
  Hit OK to close

Changing the C/C++ Build
Settings Manually

3-17 Module 3

Editor and Outline View
  Double-click on

source file in the
Project Explorer
to open C editor

  Outline view is
shown for file in
editor

3-18 Module 3

  Hover over a program
element in the source file to
see additional information

Content Assist

  Type an incomplete function name e.g. ”get" into the editor,
and hit ctrl-space

  Select desired completion value with cursor or mouse

3-19 Module 3

  Open the run
configuration
dialog Run
Run Configurations…

  Select C/C++
Application

  Select the New
button

Create a Launch Configuration

Depending on which flavor of Eclipse you
installed, you might have more choices in
Application types.

3-20 Module 3

Complete the Main Tab

  Ensure that the correct
project is selected

  Select the C/C++
Application (executable) if
necessary
  Search Project… will search

just within the project
  Browse will search anywhere

on the local file system

  Select Connect process
input/output to a
terminal if desired

3-21 Module 3

Complete the Arguments Tab

  Enter any program
arguments into the text box

  Eclipse variables can also be
passed using the
Variables… button

  Select a different working
directory if desired

3-22 Module 3

Complete the Debugger Tab

  Select Debugger tab
  Make sure gdb/mi is

selected
  Change where the

program should stop if
desired

  Change any gdb-specific
options if desired
(advanced users only)

The information on the
debugger tab will only be
used for a debug launch

  Hit the Run button to
launch your program

3-23 Module 3

Viewing Program Output

  When the program runs, the Console view should automatically
become active

  Any output will be displayed in this view (stderr in red)

3-24 Module 3

Module 4: Working with MPI

 Objective
 Learn how to build and launch an MPI program
 Explore some of the features to aid MPI

programming

 Contents
 Using a version control system (CVS)
 Building with Makefiles and autoconf
 MPI assistance features
 Working with resource managers
 Launching a parallel application

Module 4 4-0

 Configuring version control
 Checking out the source code
 Team support

Creating the Project

Module 4 4-1

Connecting to a Repository
  Select WindowOpen

PerspectiveOther…
  Select CVS Repository

Exploring then OK

Module 4 4-2

Specify Repository Location
  Right-click in the CVS

Repositories view, then select
NewRepository Location…

  Set Host to the hostname of
remote machine

  Set Repository path to the CVS
repository path

  Fill in Username and Password
  Set Connection type to extssh

to use an ssh connection
  Check Save password if you

wish to save the password
  Select Finish

Module 4 4-3

CVS Repository Exploring
  Open the repository in

the CVS Repository
view

  Open HEAD to view
files and folders in the
CVS head

  Open Branches or
Versions to view CVS
branches or versions
respectively

  Right-click on the
repository and select
Refresh Branches…
to see all branches and
versions

Module 4 4-4

Check out as an Eclipse Project
  In CVS Repositories view, right-click

on project and select ProjectCheck
out As…

  Make sure Check out as a project
configured using the New Project
Wizard is selected

  Leave Checkout subfolders
checked

  Select Finish

Module 4 4-5

Create a C Project
  The New Project Wizard is used

to create a C project

  Enter Project name
  Under Project Types, select

Makefile projectEmpty
Project
  Ensures that CDT will use existing

makefiles

  Select Finish
  When prompted to switch to the

C/C++ Perspective, select Yes

Module 4 4-6

Building the Application

 Configuring the project build directory
 Generating Makefiles
 Creating a Make Target
 Running the build

Module 4 4-7

Create a build directory
  This program requires a separate build directory
  Select the project in the Project Explorer view
  From the File menu, select elect NewFolder…
  Make sure the parent folder is correct
  Enter “build” as the folder name
  Click Finish

Module 4 4-8

Makefile Project

 Similar to managed project, but uses custom
Makefile (or other script) to control build

 User can specify command that will be used to
initiate build

 Can also specify the directory in which the
build will take place

 “Make targets” are used to control type of
build

 Can switch between managed and un-
managed project

Module 4 4-9

Makefile Project Properties

  Right click on project in
Project Explorer to
bring up properties

  Click on C/C++ Build
for the build settings

  Can change build
command if desired

  Change the Build
location to the build
directory in the project

Module 4 4-10

About Makefiles and autoconf

  Autoconf is a GNU utility often used to create Makefiles
for open source projects
  Used to generate a configure script
  Configure is run to generate a Makefile that suits a

particular system configuration
 Normally only needs to be run once, unless the build

process needs to be changed

  Run configure using two methods:
  Manually from an external shell
  By creating an External Tools Launch Configuration

  Must refresh Project Explorer whenever file system is
modified outside of Eclipse, such as after running
configure

Module 4 4-11

Generate the Makefiles
  From the Run menu, select

External ToolsExternal
Tools Configurations…

  Create a new Program
  For Location, click Browse

Workspace… and find the
configure script

  For Working Directory,
click Browse Workspace…
and select the build
directory in the project

  Click Run and you should
see output in the Console
view

  In Project Explorer, right-
click and select Refresh to
see the new files that have
been created

Module 4 4-12

Create a Make Target
  Select the project in

Make Targets view
  Click on New Make

Target icon

  Enter the desired name
of the target

  Unselect Same as the
target name and delete
“build”
  This will run the “make”

command with no
arguments

  Select OK

Module 4 4-13

Running the Build
  Open the project in the

Make Targets view to
see the build target

  Double-click on the build
target to initiate the build

  Output from the build will
be visible in the Console
view

Module 4 4-14

Added by PLDT (Parallel Lang. Dev. Tools)
feature of PTP

 MPI Context sensitive help
 MPI artifact locations
 MPI barrier analysis
 MPI templates

MPI Assistance Tools

Module 4 4-15

Context Sensitive Help
  Click mouse, then press help

key when the cursor is within a
function name
  Windows: F1 key
  Linux: ctrl-F1 key
  MacOS X: Help key or

HelpDynamic Help
  A help view appears (Related

Topics) which shows
additional information
(You may need to click on MPI
API in editor again, to
populate)

  Click on the function name to
see more information

  Move the help view within your
Eclipse workbench, if you like,
by dragging its title tab

Module 4 4-16

Some
special info
has been
added for
MPI APIs.

Show MPI Artifacts
  Select source file; Run

analysis by clicking on
drop-down menu next
to the analysis button
and selecting Show
MPI Artifacts

  Markers indicate the
location of artifacts in
editor

  In MPI Artifact View
sort by any column
(click on col. heading)

  Navigate to source code
line by double-clicking
on the artifact

  Run the analysis on
another file and its
markers will be added to
the view

  Remove markers via

Module 4 4-17

MPI Barrier Analysis
Verify barrier
synchronization in C/MPI
programs

Interprocedural static
analysis outputs:

 For verified programs,
lists barrier statements that
synchronize together
(match)
  For synchronization
errors, reports counter
example that illustrates and
explains the error

Module 4 4-18

MPI Barrier Analysis - views

MPI Barriers view

Simply lists the barriers

Like MPI Artifacts view,
double-click to navigate
to source code line (all
3 views)

Barrier Matches view
Groups barriers that
match together in a
barrier set – all
processes must go
through a barrier in the
set to prevent a
deadlock

Barrier Errors view

If there are errors, a
counter-example
shows paths with
mismatched number
of barriers

Module 4 4-19

MPI Templates

 Allows quick entry of
common patterns in MPI
programming
 Example: MPI send-
receive
 Enter: mpisr <ctrl-
space>
 Expands to

 Eclipse preferences: add more!
 C/C++ > Editor > Templates

 Extend to other common patterns

Module 4 4-20

Running the Program
 Terminology
 PTP Runtime Perspective
 Resource Managers
 Launch Configurations

Module 4 4-21

Terminology

 The PTP Runtime perspective is provided for
monitoring and controlling applications

 Some terminology
 Resource manager - Corresponds to an instance of

a resource management system (e.g. a job
scheduler). You can have multiple resource mangers
connected to different machines.

 Queue - A queue of pending jobs
 Job – A single run of a parallel application
 Machine - A parallel computer system
 Node - Some form of computational resource
 Process - An execution unit (may be multiple

threads of execution)

Module 4 4-22

Resource Managers

 PTP uses the term “resource manager” to refer to any
subsystem that controls the resources required for
launching a parallel job.

 Examples:
 Job scheduler (e.g. LoadLeveler)
 Open MPI Runtime Environment (ORTE)

 Each resource manager controls one target system
 Resource Managers can be local or remote

Module 4 4-23

About PTP Icons

  Open using legend icon in
toolbar

Module 4 4-24

Open PTP Runtime Perspective
Window > Open Perspective > Other…

Module 4 4-25

PTP Runtime Perspective

  Resource
managers view

  Machines view

  Node details
view

  Jobs view

Module 4 4-26

Adding a Resource Manager

  Right-click in Resource
Managers view and select
Add Resource Manager

  Choose the Open MPI
Resource Manager
Type

  Select Next>

Module 4 4-27

Configure the Remote Location
  Choose RSE for Remote

service provider
  Choose Remote location or

click New… to create a new
location
  Local can be used to run

applications locally
  Some resource managers

support tunneling over ssh
connections (e.g. Remote
Tools)

  The port forwarding option
would be enabled this if it was
available

Module 4 4-28

Create a New Location (RSE)
  Choose SSH Only for this

connection
  Click Next>
  Enter Host name of remote

system
  Click Finish

Module 4 4-29

Configure the Resource Manager

Module 4 4-30

  The Open MPI resource
manager will auto detect
the version and use the
appropriate commands
  Change only if you’re an

expert
  Click Next>
  Change the Name or

Description of the
resource manager if you
wish

  Click Finish

Starting the Resource Manager

  Right click on new
resource manager and
select Start resource
manager

  If everything is ok, you
should see the resource
manager change to green

  If something goes wrong,
it will change to red

Module 4 4-31

System Monitoring

  Machine status shown in
Machines view

  Node status also shown
Machines view

  Hover over node to see
node name

  Double-click on node to
show attributes

Module 4 4-32

  Open the run
configuration
dialog Run
Run Configurations…

  Select Parallel
Application

  Select the New
button

Create a Launch Configuration

Depending on which flavor of Eclipse you
installed, you might have more choices in
Application types.

Module 4 4-33

Complete the Resources Tab

  In Resources tab,
select the resource
manager you want to
use to launch this job

  Enter a value
in the Number of
processes field

  Other fields can be
used to specify
resource manager-
specific information

Module 4 4-34

Complete the Application Tab

  Select the
Application tab

  Choose the
Application program
(executable) by
clicking the Browse
button
  Local program:

executable is under
Debug folder in the
project

  Remote program:
must copy to remote
machine; navigate to
its location on the
remote machine here

  Select Display
combined output in
a console view if
desired

Module 4 4-35

Complete the Debugger Tab

  Select Debugger tab
  Choose SDM from

the Debugger
dropdown

  Use the Browse
button to select the
debugger executable
  If launching remotely,

the debugger
executable must also
be located remotely

  Set debugger session
address (covered
later)

  Click on Run to
launch the program

The debugger settings will not be used until the
application is launched under the debugger

This will be covered in more detail in Module 6
Module 4 4-36

Viewing The Run

  Double-click a
node in machines
view to see which
processes ran on
the node

  Hover over a
process for tooltip
popup

  Job and processes
shown in jobs
view

Module 4 4-37

Viewing Program Output

  Double-click a
process to see
process detail and
standard output
from the process

  Console displays
combined output
from all processes

Module 4 4-38

Module 5: Fortran

 Objective
 Learn what Photran is and how it compares to CDT
 Learn how to create a Fortran MPI application

 Contents
 Overview of Photran
 Module 3 redux (in Fortran)
 Differences between Photran and CDT
 Pointers to online documentation for Photran

Module 5 5-0

Module 5 5-1

Module 5 5-2

Module 5 5-3

Photran
•  http://www.eclipse.org/photran
•  Official Eclipse Foundation project;

part of the Parallel Tools Platform (PTP)
•  20,000 downloads/release (2007)

•  Supports Fortran 77, 90, 95, and 2003
•  Built on CDT; largely similar to it

•  Primary contributor: UIUC
•  Contrib’s from Intel, IBM, LANL, & others

Module 5 5-4

Fortran
Editor &
Outline

Module 5 5-5

Context-
Aware

Highlighting

Module 5 5-6

CVS
support

Module 5 5-7

Module 5 5-8

Debugging
(GDB GUI)

Module 5 5-9

Using Photran

 It’s just like using CDT...
 Similar New Project wizards
 Similar build procedure
 Similar launch/debug procedure

 ...but not exactly
 Configuring fixed vs. free form file extensions
 Different editor features
 Different advanced features (Module 7)

Module 5 5-10

Switch to C/C++ Perspective
 Only needed if

you’re not
already in the
perspective

 What Perspective
 am in in?
 See Title Bar

Fortran

Creating a C/C++ Application

Steps:
 Create a new C project
 Edit source code
 Save and build

Module 5 5-11 PTP Tutorial

Fortran

Fortran

Module 5 5-11

Module 5 5-12

New C Project Wizard

Create a new MPI project
  FileNewC Project

(see prev. slide)
  Name the project

‘MyHelloProject’
  Under Project types, under

Executable, select MPI
Hello World C Project

  On Basic Settings page,
fill in information for your
new project (Author
name etc.) and hit Next

Fortran
Project

Makefile Project, select MPI
Hello World Fortran
Project and hit Next

Finish

Fortran

There are
“Managed Build”
projects for
Fortran too…

…but this is a
Makefile project,
where you
maintain the
Makefile

Module 5 5-13

Project Explorer View

 Represents user’s data
 It is a set of user defined

resources
 Files
 Folders
 Projects

 Collections of files and
folders

 Plus meta-data

 Resources are visible in
the Project Explorer View

Fortran Projects

Fortran Projects

Module 5 5-14

Editor and Outline View
  Double-click on

source file to
open C editor

  Outline view is
shown for file in
editor

Fortran

Module 5 5-15

Et Cetera
 Building (compiling) is identical

  Right-click on the
project in the Fortran
Projects view, and
choose Properties

  Expand Fortran
BuildSettings

  Switch to the Error
Parsers tab

  Are Photran’s error
parsers checked? If
not, click Check all

  Click OK and re-build

Tip: Are compile errors
not shown in the
Problems view?

Module 5 5-16 PTP Tutorial

Et Cetera
 Creating a launch configuration is identical

(Suggestion: Uncheck Stop on startup at main in the Debugger tab)

  Right-click on the
project in the Fortran
Projects view, and
choose Properties

  Expand Fortran
BuildSettings

  Switch to the Binary
Parsers tab

  Make sure the parser
for your platform is
checked
 PE = Windows
 Elf = Linux
 Mach-O = Mac OS X

  Click OK

Tip: Is your binary not
listed when you create a
launch configuration?

Module 5 5-16

Module 5 5-17 PTP Tutorial

Et Cetera

 Debugging is identical

 Launching a parallel application is identical

 Debugging a parallel debugging is identical

Module 5 5-17

Module 5 5-18

Differences (1): MPI Project Wizard

 In the MPI Hello World C Project,
the MPI compiler is set in the project settings…
(See “Changing the C/C++ Build Settings Manually” in Module 3)

 …but in the MPI Hello World Fortran Project,
the MPI compiler is set in a Makefile.

Module 5 5-19

Differences (2): Content Assist

 Content assist is disabled by default.
(So are Declaration View, Hover Tips, Fortran Search, and refactorings.)
You must specifically enable it for your project.

  Right-click on the
project in the Fortran
Projects view, and
choose Properties

  Expand Fortran
Analysis/Refactoring

  Check Enable Fortran
analysis/refactoring

  Click OK
  Close and re-open any

Fortran editors

Module 5 5-20

Differences (3): Source Form

 Fortran files are either free form or fixed form
 Determined by filename extension
 Extensions are set in the workspace preferences

  Defaults:

 Fixed form: .f .fix .for .fpp .ftn

 Free form: .f03 .f95 .f90 .f77

 Many features will not work if filename
extensions are associated incorrectly
(Outline view, content assist, Fortran Search, refactorings, Open Declaration, …)

Module 5 5-21 PTP Tutorial

Differences (3): Source Form

  Navigate the tree
to General
Content Types

  Expand Text
Fortran Source
File

  Select Fixed or
Free Format and
set associations

Set fixed/free form filename extensions in the preferences

Module 5 5-21

Module 5 5-22 PTP Tutorial

Differences (3): Source Form
Outline view displays expected source form of file in editor

(according to the workspace preferences)

Attempting to open a file
with the “wrong” editor
(right-clickOpen With)
issues a warning

Module 5 5-22

Module 5 5-23

For More Information

 Module 7: Fortran Search, Refactoring

 Photran online documentation
linked from http://www.eclipse.org/photran

 User’s Guide
General introduction, basic features

 Advanced Features Guide
Features requiring analysis/refactoring to be enabled

 Online tutorial: Compiling and running the
Parallel Ocean Program using Photran and PTP
linked from http://wiki.eclipse.org/PTP/photran/tutorials

Module 6

Module 6: Parallel Debugging

 Objective
 Learn the basics of debugging parallel programs with

PTP

 Contents
 Launching a parallel debug session
 The PTP Debug Perspective
 Controlling sets of processes
 Controlling individual processes
 Parallel Breakpoints
 Terminating processes

6-0

Module 6

Launching A Debug Session

  Use the drop-down next to
the debug button (bug
icon) instead of run button

  Select the project to launch
  The debug launch will use

the same number of
processes that the normal
launch used (edit the
Debug Launch
Configuration to change)

6-1

Module 6

  Parallel Debug
view shows job
and processes
being debugged

  Debug view shows
threads and call
stack for individual
processes

  Source view
shows a current
line marker for all
processes

The PTP Debug Perspective (1)

6-2

Module 6

The PTP Debug Perspective (2)

  Breakpoints view
shows breakpoints
that have been set
(more on this later)

  Variables view
shows the current
values of variables
for the currently
selected process in
the Debug view

  Outline view (from
CDT) of source
code

6-3

Module 6

Stepping All Processes

  The buttons in the
Parallel Debug View
control groups of
processes

  Click on the Step Over
button

  Observe that all process
icons change to green,
then back to yellow

  Notice that the current
line marker has moved to
the next source line

6-4

Module 6

Stepping An Individual Process
  The buttons in the

Debug view are used
to control an
individual process, in
this case process 0

  Click the Step Over
button

  You will now see two
current line markers,
the first shows the
position of process 0,
the second shows the
positions of processes
1-3

6-5

Module 6

Process Sets (1)

  Traditional debuggers apply operations to a single
process

  Parallel debugging operations apply to a single process
or to arbitrary collections of processes

  A process set is a means of simultaneously referring to
one or more processes

6-6

Module 6

Process Sets (2)

  When a parallel debug session is first started, all
processes are placed in a set, called the Root set

  Sets are always associated with a single job
  A job can have any number of process sets
  A set can contain from 1 to the number of processes in

a job

6-7

Module 6

Operations On Process Sets

  Debug operations on the
Parallel Debug view
toolbar always apply to the
current set:
  Resume, suspend, stop,

step into, step over, step
return

  The current process set is
listed next to job name
along with number of
processes in the set

  The processes in process
set are visible in right hand
part of the view

Root set = all
processes

6-8

Module 6

Create set Remove
from set

Delete
set

Change
current set

Managing Process Sets

  The remaining icons in the toolbar of the Parallel
Debug view allow you to create, modify, and delete
process sets, and to change the current process set

6-9

Module 6

Creating A New Process Set
  Select the processes

you want in the set by
clicking and dragging,
in this case, the last
three

  Click on the Create
Set button

  Enter a name for the
set, in this case
workers, and click OK

  You will see the view
change to display only
the selected processes

6-10

Module 6

Stepping Using New Process Set
  With the workers set

active, click the Step
Over button

  You will see only the
first current line
marker move

  Step a couple more
times

  You should see two line
markers, one for the
single master process,
and one for the 3
worker processes

6-11

Module 6

Process Registration

 Process set commands apply to groups of
processes

 For finer control and more detailed
information, a process can be registered and
isolated in the Debug view

 Registered processes, including their stack
traces and threads, appear in the Debug view

 Any number of processes can be registered,
and processes can be registered or
un-registered at any time

6-12

Module 6

Registering A Process
  To register a process,

double-click its process
icon in the Parallel
Debug view or select a
number of processes and
click on the register
button

  The process icon will be
surrounded by a box and
the process appears in
the Debug view

  To un-register a process,
double-click on the
process icon or select a
number of processes and
click on the unregister
button

Individual
(registered)
processes

Groups (sets)
of processes

6-13

Module 6

Current Line Marker

 The current line marker is used to show the
current location of suspended processes

 In traditional programs, there is a single
current line marker (the exception to this is
multi-threaded programs)

 In parallel programs, there is a current line
marker for every process

 The PTP debugger shows one current line
marker for every group of processes at the
same location

6-14

Module 6

Multiple processes marker

Registered process marker

Un-registered process marker

Colors And Markers

  The highlight color depends on
the processes suspended at
that line:
  Blue: All registered process(es)
  Orange: All unregistered

process(es)
  Green: Registered or unregistered

process with no source line (e.g.
suspended in a library routine)

  The marker depends on the
type of process stopped at that
location

  Hover over marker for more
details about the processes
suspend at that location

6-15

Module 6

  Apply only to processes in the particular set that is
active in the Parallel Debug view when the breakpoint
is created

  Breakpoints are colored depending on the active
process set and the set the breakpoint applies to:
 Green indicates the breakpoint set is the same

as the active set.
  Blue indicates some processes in the breakpoint set are

also in the active set (i.e. the process sets overlap)
  Yellow indicates the breakpoint set is different from the

active set (i.e. the process sets are disjoint)
  When the job completes, the breakpoints are

automatically removed

Breakpoints

6-16

Module 6

Creating A Breakpoint
  Select the process set that

the breakpoint should apply
to, in this case, the workers
set

  Double-click on the left edge
of an editor window, at the
line on which you want to set
the breakpoint, or right click
and use the Parallel
BreakpointToggle
Breakpoint context menu

  The breakpoint is displayed
on the marker bar

6-17

Module 6

Hitting the Breakpoint
  Click on the Resume button

in the Parallel Debug view
  In this example, the three

worker processes have hit the
breakpoint, as indicated by
the yellow process icons and
the current line marker

  Process 0 is still running as its
icon is green

  Processes 1-3 are suspended
on the breakpoint

6-18

Module 6

More On Stepping
  The Step buttons are only

enabled when all processes
in the active set are
suspended (yellow icon)

  In this case, process 0 is still
running

  Switch to the set of
suspended processes (the
workers set)

  You will now see the Step
buttons become enabled

6-19

Module 6

Breakpoint Information

 Hover over breakpoint icon
 Will show the sets this breakpoint applies to

 Select Breakpoints view
 Will show all breakpoints in all projects

6-20

 Use the menu in the breakpoints view to group
breakpoints by type

 Breakpoints sorted by breakpoint set (process
set)

Module 6

Breakpoints View

6-21

Module 6

  Apply to all processes and all jobs
  Used for gaining control at debugger startup
  To create a global breakpoint

  First make sure that no jobs are selected (click in white
part of jobs view if necessary)

 Double-click on the left edge of an editor window
 Note that if a job is selected, the breakpoint will apply to

the current set

Global Breakpoints

6-22

Module 6

Terminating A Debug Session

  Click on the Terminate
icon in the Parallel
Debug view to
terminate all processes
in the active set

  Make sure the Root set
is active if you want to
terminate all processes

  You can also use the
terminate icon in the
Debug view to
terminate the currently
selected process

6-23

Module 7

Module 7: Advanced Development

 Objective
 Explore some of the advanced features of Eclipse and PTP

 Contents
 Advanced Eclipse Concepts (generic, not CDT/PTP)
 Refactoring and Search in Fortran and C/C++
 Parallel Language Development Tools: MPI, OpenMP, UPC

 Special Tools for parallel development
 Remote Development

7-0

Advanced Eclipse Concepts

  Perspectives, views and customizing
  Workbench Preferences
  Version Control
  Task Tags

Module 7 7-1

Customizing Perspectives

  Items such as shortcuts, menu items and views may be
customized
 WindowCustomize Perspective…

  Save changes
 WindowSave Perspective As…

  Close Perspective
  Right-click on perspective title and select Close

  Reset Perspective
 WindowReset Perspective resets the current

perspective to its default layout

Module 7 7-2

Opening New Views

 To open a view:
 Choose WindowShow ViewOther…
 The Show View dialog comes up
 Select the view to be shown
 Select OK

Module 7 7-3

Workbench Preferences

 Preferences provide a way for you to
customize your Workbench
 By selecting WindowPreferences… or

EclipsePreferences… (Mac)

 Examples of preference settings
 Use Emacs bindings for editor keys
 Modify editor folding defaults

 E.g., fold all macro definitions
 Associate file types with file extensions

 E.g., *.f03 with the Fortran editor
 Toggle automatic builds
 Change key sequence shortcuts

 E.g., Ctrl+/ for Comment
Module 7 7-4

Version Control
(Eclipse Team Support)

  Version control provided
through the Project
Explorer view, in the
Team context menu

  Provides familiar
actions:
  Commit…
  Update…

  Also less used tasks:
  Create/Apply

Patch…
  Tag as Version…
  Branch…
  Merge…
  Add to .cvsignore…

Module 4 7-5

Team Synchronizing

  Accessed from the
TeamSynchronize
with Repository
context menu

  Shows:
  Files to be added
  Files to be updated
  Files to be committed
  Files to be deleted
  Merge conflicts

  Double-click on file to
show compare viewer

  Operations can be
performed on individual
files or all at once

Module 4 7-6

Module 7

Task Tags

  Task tags are identifiers in C/
C++ comments

  TODO is a built-in task tag
  The build locates task tags

during compilation
  View task tags in Tasks View

 If it’s not shown, Window
 Show View  Other…
Open General and select
Tasks

  Configure your own task tag
in Window  Preferences
 Under C/C++, select Task

Tags
7-7

Module 7

Refactoring
and

Search
in Fortran and C/C++

7-8

Refactoring

Module 7 7-9

  Refactoring is the research
motivation for Photran @ Illinois
  Illinois is a leader in refactoring research

  “Refactoring” was coined in our group
(Opdyke & Johnson, 1990)

  We had the first dissertation…
(Opdyke, 1992)

  …and built the first refactoring tool…
(Roberts, Brant, & Johnson, 1997)

  …and first supported the C preprocessor
(Garrido, 2005)

  Photran’s agenda: refactorings for HPC,
language evolution, refactoring framework

  Photran 5.0: 10-15 refactorings

(making changes to source code that don’t affect the behavior of the program)

PTP Tutorial

In Java (Murphy-Hill et al., ICSE 2008):

Module 7

Rename Refactoring
 Changes the name of a variable, function, etc.,

including every use
(change is semantic, not textual, and can be workspace-wide)

 Only proceeds if the new name will be legal
(aware of scoping rules, namespaces, etc.)

7-10

  Select C/C++ Perspective or
Fortran Perspective

 Open a source file
  Click in editor view on

declaration of a variable
  Select menu item

RefactorRename
 Or use context menu

  Enter new name
PTP Tutorial

  Moves statements into a new subroutine, replacing the
statements with a call to that subroutine

  Local variables are passed as arguments

Module 7

Extract Procedure Refactoring

7-11

  Select a sequence of statements
  Select menu item

RefactorExtract Procedure…
in Fortran, or, in C/C++,
RefactorExtract Function…
 Or use context menu

  Enter new name

PTP Tutorial Module 7 7-11

  Introduce Implicit None adds an IMPLICIT NONE statement
and adds explicit variable declarations for all implicitly
declared variables

Module 7

Photran Implicit Refactoring

7-12

  Introduce in a single file by
opening the file and selecting
RefactorIntroduce IMPLICIT
NONE…

  Introduce in multiple files by
selecting them in the Fortran
Projects view, right-clicking on
the selection, and choosing
RefactorIntroduce IMPLICIT
NONE…

PTP Tutorial Module 7 7-12

CDT Rename in File

  Position the caret
over an identifier.

  Press Ctrl+1
(Command+1 on Mac).

  Enter a new name.
Changes are
propagated within
the file as you type.

Module 7 7-13 PTP Tutorial

Module 7

CDT Extract Constant Refactoring

 Other refactorings that
are planned:

  Extract Function
  Hide Member Function
  Move Field or Member Function
  Extract Subclass
  Extract Baseclass
  Separate Class
  Implement Function
  Declare Function
  Move Function Definition
  Generate Getters and Setters

7-14 PTP Tutorial

Module 7

Language-Based Searching

7-15

  “Knows” what things can
be declared in each
language (functions,
variables, classes,
modules, etc.)

  E.g., search for every call
to a function whose name
starts with “get”

  Search can be project- or
workspace-wide

PTP Tutorial

Open Declaration

  Jumps to the declaration
of a variable, function,
etc., even if it’s in a
different file

  Right-click on an identifier
  Click Open Declaration

Tip: Open Declaration works
in C/C++, and it works in
Fortran, but it cannot jump
“across languages”

Module 7 7-16 PTP Tutorial Module 7 7-16

Parallel Lang. Dev. Tools

 PLDT Features
 Analysis of C and C++ code to determine the location

of MPI, OpenMP, and UPC Artifacts
 Content assist via ctrl+space (“completion”)
 Hover help
 Reference information about the API calls via Dynamic

Help
 New project wizard automatically configures managed

build projects for MPI & OpenMP
 OpenMP problems view of common errors
 OpenMP “show #pragma region” , “show concurrency”
 MPI Barrier analysis - detects potential deadlocks

Module 7 7-17

Some MPI features were covered in Module 4

OpenMP Managed Build Project

  If you haven’t set up
OpenMP preferences e.g.
include file location, do it
now

  Create a new OpenMP
project
  FileNewC Project
  Name the project e.g.

‘MyOpenMPproject’
  Select OpenMP Hello World C

Project
  Select Next, then fill in other

info like MPI project

Module 7 7-18

Setting OpenMP Special
Build Options

  OpenMP typically requires
special compiler options.
 Open the project

properties
 Select C/C++ Build
 Select Settings
 Select C Compiler

 In Miscellaneous,
add option(s).

Module 7 7-19

Show OpenMP Artifacts

  Select source file,
folder, or project

  Run analysis

  See artifacts in
OpenMP Artifact
view

Module 7 7-20

Show Pragma Region

  Run OpenMP
analysis

  Right click on
pragma in
artifact view

  Select Show
pragma region

  See highlighted region in C editor

Module 7 7-21

Show OpenMP Problems

  Select OpenMP
problems view

  Will identify standard
OpenMP restrictions

Module 7 7-22

Show Concurrency
  Highlight a statement
  Select the context menu

on the highlighted
statement, and click
Show concurrency

  Other statements will be
highlighted in yellow

  The yellow highlighted
statements might execute
concurrently to the
selected statement

Module 7 7-23

Module 7

UPC Support

  To see UPC support in C
editor, install the optional
feature from CDT

  See Also:
http://wiki.eclipse.org/PTP/other_tools_setup#Using_UPC_features

  Filetypes of “upc” will
get UPC syntax high-
lighting, content assist,
etc.

  Use preferences to
change default for *.c
if you like

7-24

Under Optional Features

Remote Development

  PTP already provides the ability to launch/debug
remotely
  However it is often desirable to be able to edit and build remotely
  If projects are very large, build times may be considerable

  The PTP Remote Development Tools (RDT) will provide
a complete remote development environment
  C/C++ (and Fortran) projects can be hosted on a remote machine
  Eclipse runs on your local workstation or laptop
  Files are pulled to local machine only for editing
  Remote indexing and other services are performed remotely
  Both managed and Makefile projects are built remotely
  Uses either Remote System Explorer (RSE) or PTP’s Remote Tools
  Will have the ability to tunnel over ssh connections

Module 7 7-25

Remote Development (2)

  RDT was introduced with PTP 2.1
  Configuration is separate from PTP configuration
  Restricted to RSE connections only (no tunneling)
 Manual server launch

  PTP 3.0 will seamlessly integrate RDT configuration and
simplify setup and use
 New service model combines PTP and RDT configuration
 New project wizard has been enhanced and simplified
  Automatically launch remote server process
  Still under active development

 …. So we won’t cover it today

Module 7 7-26

Module 8: Other Tools and
Wrap-up

 Objective
 How to find more information on PTP
 Learn about other tools related to PTP
 See PTP upcoming features

 Contents
 Links to other tools, including performance tools
 Planned features for new versions of PTP
 Additional documentation
 How to get involved

Module 8 8-0

NCSA
HPC Workbench

  Tools for NCSA Blue Waters
  http://www.ncsa.illinois.edu/BlueWaters/
  Sustained Petaflop system

  Based on Eclipse and PTP
  Includes some related tools

 Performance tools
 Scalable debugger
 Workflow tools (https://wiki.ncsa.uiuc.edu/

display/MRDPUB/MRD+Public+Space+Home
+Page)

  Part of the enhanced computational environment
described at:
 http://www.ncsa.illinois.edu/BlueWaters/ece.html

Module 8 8-1

NCSA HPC Workbench Coding &
Analysis

(CDT, PLDT,
Photran)

PTP Debugging

PTP �
Launching &
Monitoring

Performance

Tuning

(HPC toolkit, �
HPCS toolkit, �

RENCI, …)

Workflow

Module 8 8-2

PTP-Related Tools

 External Tools Framework
 Formerly Performance Tools Framework

 Tuning and Analysis Utilities (TAU)
 ISP – In-situ Partial Ordering

 MPI analysis tools from U.Utah

Module 8 8-3

PTP/External Tools Framework
formerly “Performance Tools Framework”

Goal:
 Reduce the “eclipse plumbing”

necessary to integrate tools
 Provide integration for

instrumentation, measurement, and
analysis for a variety of performance
tools

  Dynamic Tool Definitions:
Workflows & UI

  Tools and tool workflows are
specified in an XML file

  Tools are selected and configured in
the launch configuration window

  Output is generated, managed and
analyzed as specified in the
workflow

Module 8 8-4

PTP TAU plug-ins http://
www.cs.uoregon.edu/research/tau/home.php

  TAU (Tuning and Analysis Utilities)
  First implementation of Performance Tools Framework
  Eclipse plug-ins wrap TAU functions, make them

available from Eclipse
  Compatible with Photran and CDT projects and with

PTP parallel application launching
  Other plug-ins launch Paraprof from Eclipse too

Module 8 8-5

ISP – In-situ Partial Order

 Being contributed to PTP by U. Utah
 Hope to make available in PTP 3.0 (late Oct.)

 Analyses MPI code dynamically for deadlocks, etc.
 Can match sends and recieves
 Can work with several different MPI

implementations

Module 8 7-6

ISP – Formal Dynamic Verification of MPI
Applications

(BlueGene/L - Image courtesy of IBM / LLNL)

 (Image courtesy of Steve Parker, U of Utah)

•  Verifies MPI User Applications, generating
 only the Relevant Process Interleavings

•  Detects all Deadlocks, Assert Violations,
 MPI object leaks, and Default Safety Properties

•  Works by Instrumenting MPI Calls
 Computing Relevant Interleavings, Replaying

8-7

Eclipse CDT/PTP based ISP GUI
ISP Plug-in (trident icon) based on CDT and PTP
allows PostVerification Review of
Relevant Interleavings, and highlights bugs

It also allows viewing of MPI
Happens-Before Relation – a
succinct summary of the
required MPI orderings

For details, including Beta download, please visit
http://www.cs.utah.edu/formal_verification/ISP-Eclipse

8-8

Useful Eclipse Tools

 Python
 http://pydev.sourceforge.net

 Ruby
 http://sourceforge.net/projects/rubyeclipse

 Subversion (now an Eclipse project)
 http://eclipse.org/subversive

 Git (now an Eclipse project)
 http://www.eclipse.org/egit

 … and many more!

Module 8 8-9

Future PTP Features

 Support for multicore development
  Building on Cell IDE and other multicore tools

 Resource managers to support for PBS, LSF,
and Blue Gene

 Transitioning debugger to Scalable Tools
Communication Infrastructure (STCI)

 Enhancements to ETF to support compiler
generated reports and optimization directives

 Scalability improvements
  UI to support 1M processes
  Optimized communication protocol
  Very large application support

Module 8 8-10

Information About PTP

  Main web site for downloads, documentation, etc.
  http://eclipse.org/ptp

  Developers’ wiki for designs, planning, meetings, etc.
  http://wiki.eclipse.org/PTP

  Articles and other documents:
  http://wiki.eclipse.org/PTP/articles

Module 8 8-11

Mailing Lists

  PTP Mailing lists
 Major announcements (new releases, etc.) - low volume

 http://dev.eclipse.org/mailman/listinfo/ptp-announce

  User discussion and queries - medium volume
 http://dev.eclipse.org/mailman/listinfo/ptp-user

 Developer discussions - high volume
 http://dev.eclipse.org/mailman/listinfo/ptp-dev

  Photran Mailing lists
  User discussion and queries

  http://dev.eclipse.org/mailman/listinfo/photran

 Developer discussions –
  http://dev.eclipse.org/mailman/listinfo/photran-dev

Module 8 7-12

Getting Involved

 See http://eclipse.org/ptp
 Read the developer documentation on the wiki
 Join the mailing lists
 Attend the monthly developer meetings

 Teleconference each second Tuesday, 1:00 pm ET

 PTP will only succeed with your participation!

Module 8 8-13

Thanks for attending
We hope you found it useful

PTP Tutorial Feedback

 Please complete feedback form
 Your feedback is valuable!

Module 8 8-14

	ptp-00-cluster09
	ptp-01-intro
	ptp-02-install
	ptp-03-c
	ptp-04-mpi
	ptp-05-fortran
	ptp-06-debug
	ptp-07-advFeat
	ptp-08-wrapup

