
A New and Improved Eclipse
Parallel Tools Platform: Advancing the
Development of Scientific Applications

Greg Watson, IBM
g.watson@computer.org

Beth Tibbitts, IBM
tibbitts@us.ibm.com

Portions of this material are supported by or based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under its Agreement No. HR0011-07-9-0002, the
United States Department of Energy under Contract No. DE-FG02-06ER25752 and the SI2-SSI
Productive and Accessible Development Workbench for HPC Applications, which is supported by
the National Science Foundation under award number OCI 1047956

Jay Alameda, NCSA
jalameda@ncsa.uiuc.edu

Jeff Overbey, UIUC
overbey2@illinois.edu

November 13, 2011
The latest version of these slides will be available at

http://wiki.eclipse.org/PTP/tutorials/SC11

Tutorial Outline
Time (Tentative!) Module Topics Presenter

8:30-9:00 1. Eclipse and PTP
 Installation

  Installation of Eclipse and PTP Greg/Beth

 9:00-9:30 2. Introduction & Overview   Eclipse architecture & organization overview Greg

10:00-10:30 BREAK

10:30-12:00 3. Developing with Eclipse

Note: try to start this
before break. This is the
longest module

  Eclipse basics; Creating a new project
  Local, remote, and synchronized projects
  C and Fortran features; Parallel dev. features
  Building managed and Makefile projects
  Resource Managers and launching a parallel app

Beth, Jeff, Jay

12:00 – 1:00 Lunch

1:00-2:30 4. Debugging   Debugging an MPI program Greg

2:30-3:00 BREAK

3:00-4:30 5. Performance Tuning &
Analysis Tools

  TAU, ETFw including hands-on exercise
  Overview of GEM, PPW

Wyatt Spear

4:30-5:00 6. Other Tools, Wrapup   NCSA HPC Workbench, Other Tools, website,
mailing lists, future features

Jay/Beth

Final Slides, Installation
Instructions

 Please go to
http://wiki.eclipse.org/PTP/
tutorials/SC11 for slides and
installation instructions

Module 1: Installation

 Objective
 To learn how to install Eclipse and PTP

 Contents
 System Prerequisites
 Eclipse Download and Installation
 PTP Installation from an Update Site
 Installation Confirmation

Module 1 1-0

About the Tutorial Installation

  This tutorial assumes you have Eclipse and PTP pre-
installed on your laptop

  If you already have Eclipse installed, go directly to
“Starting Eclipse”, slide 5

  If you don’t have Eclipse installed, you will need to
follow the handouts so that you can catch up with the
rest of the class

  Note: up-to-date info on installing PTP and its pre-reqs
is available from the release notes:
  http://wiki.eclipse.org/PTP/release_notes/5.0

  This information may supersede these slides

Module 1 1-1

System Prerequisites

 Local system (running Eclipse)
 Linux (just about any version)
 MacOSX (10.5 Leopard or 10.6 Snow Leopard)
 Windows (XP on)

 Java: Eclipse requires Sun or IBM Java
 Only need Java runtime environment (JRE)
 Java 1.5 or higher

 Java 1.5 is the same as JRE 5.0
 Note: The GNU Java Compiler (GCJ), which comes

standard on Linux, will not work!
 Note 2: OpenJDK, distributed with some linux

distributions, has not been tested with Eclipse.
 See http://wiki.eclipse.org/PTP/installjava

Module 1 1-2

Eclipse Packages

 Eclipse is available in a number of different
packages for different kinds of development
  http://eclipse.org/downloads
 This is Eclipse 3.7, also known as “Indigo”

 With Indigo, there is a new package directly
relevant for HPC:
 Eclipse IDE for Parallel Application Developers
 This is recommended for all new installs

 Can also add PTP to an existing Eclipse
installation

Module 1 1-3

Eclipse Installation

 Download the appropriate package
 If your machine is Linux or Mac OS X, untar

the file
 On Mac OS X you can just double-click in the Finder

 If your machine is Windows, unzip the file
 This creates an eclipse folder containing the

executable as well as other support files and
folders

Module 1 1-4

Starting Eclipse
  Linux

  From a terminal window, enter
“<eclipse_installation_path>/eclipse/eclipse &”

  Mac OS X
  From finder, open the eclipse folder where you installed
 Double-click on the Eclipse application
 Or from a terminal window

  Windows
 Open the eclipse folder
 Double-click on the eclipse executable

Module 1 1-5

Specifying A Workspace

The prompt can be
turned off

 Eclipse prompts for a workspace location at
startup time

 The workspace contains all user-defined data
  Projects and resources such as folders and files

Module 1 1-6

Eclipse Welcome Page

 Displayed when Eclipse is run for the first time

Select “Go to the workbench”

Module 1 1-7

Check Installation Details

 To confirm you have installed OK
 Mac: Eclipse>About Eclipse
 Others: Help>About

 Choose Installation Details
 Confirm you have the following installed

software

1-8 Module 1

Differs
depending
on base
download

Checking for PTP Updates

 From time-to-time there may be newer PTP
releases than the Indigo release
 Indigo updates are released only in Sept and February

 PTP maintains its own update site with the
most recent release
 Bug fix releases can be more frequent than Indigo’

 You must enable the PTP-specific update site
before the updates will be found

1-9 Module 1

Updating PTP

  Enable PTP-specific update site
 Help>Install new software
  Click Available Software

Sites link
  Select checkbox for the PTP site:

 http://download.eclipse.org/tools/ptp/updates/indigo
  Choose OK
  Choose Cancel (to return to Eclipse workbench)

  Now select Help>Check for updates
  Follow prompts like a normal installation

1-10 Module 1

PTP Installation Into Existing Eclipse

  Only required if you’re not using Eclipse IDE for Parallel
Application Developers bundle

  New functionality is added to Eclipse using features
  Features are obtained and installed from

  An update site on a web server, or
  A local archive

  Eclipse 3.7 comes preconfigured with a link to the
Indigo Update Site
  This is a remote site that contains a large number of

official features
  Indigo projects are guaranteed to work with Eclipse 3.7

Module 1 1-11

  From the Help menu, choose
 Install New Software…

  The Indigo site comes
already configured with Eclipse

  We are going to install:
  C/C++ Development Tools (CDT)*
  Parallel Tools Platform (PTP)

 End-User Runtime
  PTP Remote Development Tools (RDT)

*If you installed the C/C++ IDE,
you already have CDT in your Eclipse
installation and you can omit this.

Indigo Update Site

Module 1 1-12

Install PTP Features

  Under General Purpose Tools
  Parallel Tools Platform (PTP)

End-User Runtime
  PTP Parallel Lang Dev. Tools UPC

Support*
  PTP Remote Dev Tools (RDT)

  Check these and
click ‘Next’

1-13 Module 1
* pre-req pulls in optional CDT UPC feature

Finishing Installation

 Review the items to be
installed

 Finish installing:
 Choose Next>
 Accept license terms
 Choose Finish
 Features are downloaded and installed
 Any pre-requisites are also installed if available

 Restart Eclipse when prompted

Module 1 1-14

Restart after Install

  Welcome page
informs you of new
features installed

  Click to learn
more, or…

  Select workbench
icon to go to
workbench

1-15 Module 1

Newly-installed
features in yellow

2-0 Module 2

Module 2: Introduction

 Objective
 To introduce the Eclipse platform and PTP

 Contents
 New and Improved Features
 What is Eclipse?
 What is PTP?

2-1 Module 2

New and Improved Features

 More flexible projects
 Synchronized projects overcome many problems of

remote projects
 Allows development when “off-line”
 Works with non-C/C++ projects

 More customizable resource managers
 Resource managers can now be added by users
 Able to have site-specific configurations
 Interactive launch using job schedulers now

supported

2-2 Module 2

New and Improved Features (2)

 Scalable system/job monitoring
 New perspective allows monitoring of systems of

virtually any size
 View shows location of jobs on cluster
 Active and inactive jobs views

 Remote support for performance tools
 External Tools Framework has been extended to

support remote systems
 Performance tools such as TAU can now launch and

collect data from remote systems

2-3 Module 2

What is Eclipse?

 A vendor-neutral open-source workbench for
multi-language development

 A extensible platform for tool integration
 Plug-in based framework to create, integrate

and utilize software tools

2-4 Module 2

Eclipse Features

 Full development lifecycle support
 Revision control integration (CVS, SVN, Git)
 Project dependency management
 Incremental building
 Content assistance
 Context sensitive help
 Language sensitive searching
 Multi-language support
 Debugging

2-5 Module 2

Parallel Tools Platform (PTP)

  The Parallel Tools Platform aims to provide a highly
integrated environment specifically designed for parallel
application development

  Features include:
  An integrated development environment (IDE) that

supports a wide range of parallel architectures and runtime
systems

  A scalable parallel debugger
  Parallel programming tools

(MPI, OpenMP, UPC, etc.)
  Support for the integration

of parallel tools
  An environment that simplifies the

end-user interaction with parallel systems
  http://www.eclipse.org/ptp

Eclipse PTP Family of Tools
Coding & Analysis

(C, C++, Fortran)

Parallel Debugging

Launching &
Monitoring

Performance Tuning
(TAU, PPW, …) 2-6 Module 2

How Eclipse is Used
Editing/Compiling

2-7 Module 2

Source Code

How Eclipse is Used
Launching/Monitoring

2-8 Module 2

Source Code
Executable

How Eclipse is Used
Debugging

2-9 Module 2

Source Code
Executable

How Eclipse is Used
Performance Tuning

2-10 Module 2

Source Code
Executable
Perf. Data

Module 3: Developing with Eclipse
 Objective

 Learn basic Eclipse concepts: Perspectives, Views, …
 Learn about local, remote, and synchronized projects
 Learn how to create and manage a C project
 Learn about Eclipse editing features
 Learn about Eclipse Team features
 Learn about MPI features
 Learn how to build and launch an MPI program on a

remote system
 Learn about Fortran projects
 Learn about searching, refactoring, etc.

Module 3 3-0

Contents
  Basic Eclipse Features (3-2)
  Projects In Eclipse (3-13)
  Editor Features (3-22)
  Team Features (3-31)
  MPI Features (3-37)
  Synchronizing the Project (3-53)
  Building the Project (3-56)
  Resource Manager Configuration (3-64)
  Launching a Job (3-75)
  Fortran Project properties (3-81)
  Searching (3-90)
  Advanced editing: Content Assist, Code Templates (3-97)
  Refactoring and transformation (3-101)

3-1 Module 3

Basic Eclipse Features

3-2 Module 3

Eclipse Basics
  A workbench contains the menus, toolbars, editors and

views that make up the main Eclipse window

perspective Module 3

view
view

view

editor

  The workbench represents
the desktop development
environment
  Contains a set of tools

for resource mgmt
  Provides a common way

of navigating through
the resources

  Multiple workbenches
can be opened at the
same time

  Only one workbench can
be open on a workspace
at a time

3-3

Perspectives

 Perspectives define the layout of views and
editors in the workbench

 They are task oriented, i.e. they contain
specific views for doing certain tasks:
 There is a Resource Perspective for manipulating

resources
 C/C++ Perspective for manipulating compiled code
 Debug Perspective for debugging applications

  You can easily switch between perspectives

 If you are on the Welcome screen now, select
“Go to Workbench” now

Module 3 3-4

Switching Perspectives

  Three ways of changing
perspectives

  Choose the Window>Open
Perspective menu option

  Then choose Other…

  Click on the Open
Perspective button in the
upper right corner of screen

  Click on a perspective
shortcut button

 Switch perspective
on next slide…

Module 3 3-5

Switch to C/C++ Perspective

 Only needed if
you’re not
already in the
perspective

 What Perspective
 am in in?
 See Title Bar

Module 3 3-6

Views

 The workbench window is
divided up into Views

 The main purpose of a view is:
 To provide alternative ways of presenting information
 For navigation
 For editing and modifying information

 Views can have their own menus and toolbars
 Items available in menus and toolbars are

available only in that view
 Menu actions only

apply to the view

 Views can be resized

view

view view

Module 3 3-7

Stacked Views

 Stacked views appear as tabs
 Selecting a tab brings that view to the

foreground

Module 3 3-8

Expand a View

 Placeholder
 Double-click on a view/editor’s tab to fill the

workbench with its content; dclick again to
return to original size

3-9 Module 3

Help

  To access help
  Help>Help Contents
  Help>Search
  Help>Dynamic Help

  Help Contents provides
detailed help on different
Eclipse features in a
browser

  Search allows you to
search for help locally, or
using Google or the Eclipse
web site

  Dynamic Help shows help
related to the current
context (perspective, view,
etc.)

Module 3 3-10

Eclipse Preferences

  Eclipse Preferences allow
customization of almost
everything

  To open use
  Mac: Eclipse>Preferences…
  Others:

Window>Preferences…

  The C/C++ preferences
allow many options to be
altered

  In this example you can
adjust what happens in
the editor as you type.

Module 3 3-11

Preferences Example

More C/C++ preferences:
 In this example the

Code Style preferences
are shown

 These allow code to be
automatically
formatted in different
ways

Module 3 3-12

Projects In Eclipse

3-13 Module 3

3-14

Project Types
 Local

 Source is located on local machine, builds happen
locally

 Synchronized
 Source is local, then synchronized with remote

machine
 Building and launching happens remotely

 Remote
 Source is located on remote machine, build and

launch takes place on remote machine

-14 Module 3

3-15

Synchronized Projects
  Projects types can be:

-15 Module 3

File	
 Service	
 Index	
 Service	

Launch	
 Service	

Build	
 Service	

Debug	
 Service	

Local	
 source	

code	

Source	
 code	

copy	

Local	
 Remote	

Run	

Debug
	

Compute	

Edit	
 Search/Index	

NavigaAon	

Synchronize	

Executable	

3-16

Remote Projects
  Projects types can be:

-16

File	
 Service	
 Index	
 Service	

Launch	
 Service	

Build	
 Service	

Debug	
 Service	

Source	
 code	

Local	
 Remote	

Run	

Debug
	

Compute	

Edit	

Executable	

Module 3

3-17

C, C++, and Fortran Projects
 Makefile-based

 Project contains its own makefile (or makefiles) for
building the application

 Managed
 Eclipse manages the build process, no makefile

required

 Parallel programs can be run on local machine
or on a remote system
 MPI needs to be installed
 An application built locally probably can’t be run on a

remote machine unless their architectures are the
same

-17 Module 3

  Switch to CVS Repository
Exploring perspective

  Right click in CVS Repositories
view and select New>Repository
Location…

Importing a Project from CVS

Module 3 3-18

  Expand the repository location
  Expand HEAD>samples
  Right click on shallow and select

Check Out As…
  On Check Out As dialog, select

Finish

Checking out the Project

Module 3 3-19

  Expand C/C++
  Select C Project and click on Next>

New Project Wizard

Module 3 3-20

  Enter ‘shallow’ as Project
Name

  Expand Makefile project
in Project Types

  Select Empty Project
  Select a toolchain that

matches your system from
Toolchains

  Click on Finish

  You should now see the “shallow” project in your
workspace

C/C++ Perspective

Module 3 3-21

Editor Features

3-22 Module 3

Editors
  An editor for a resource (e.g. a file) opens when you

double-click on a resource
  The type of editor depends on the type of the resource

  .c files are opened with the
C/C++ editor by default

  Use Open With to
use another editor

  Some editors do not just edit raw text
  When an editor opens on a resource, it stays open across

different perspectives
  An active editor contains menus and toolbars specific to that

editor

Module 3 3-23

Saving File in Editor

 When you change a file in the editor,
an asterisk on the editor’s title bar
indicates unsaved changes

 Save the changes by using
Command/Ctrl-S or File>Save

Module 3 3-24

Editor and Outline View
  Double-click on

source file
  Editor will open in

main view

  Outline view is
shown for file in
editor

  Console shows
results of build,
local runs, etc.

Module 3 3-25

Source Code Editors & Markers

  A source code editor is a
special type of editor for
manipulating source
code

  Language features are
highlighted

  Marker bars for showing
  Breakpoints
  Errors/warnings
  Task Tags, Bookmarks

  Location bar for
navigating to interesting
features in the entire file

Icons:

Module 3 3-26

Line Numbers

  Text editors can show line numbers in the
left column

3-27 Module 3

  To turn on line
numbering:
  Right-mouse click in

the editor marker bar
  Click on Show Line

Numbers

  On demand hyperlink
  Hold down Command/Ctrl key
  Click on element to navigate to

its definition in the header file
(Exact key combination
depends on your OS)

  E.g. Command/Ctrl and click on
EXIT_SUCCESS

  Open declaration
  Right-click and select Open

Declaration will also open the
file in which the element is
declared

  E.g. right-click on stdio.h and
select Open Declaration

Navigating to Other Files

Module 3 3-28

Content Assist & Templates
  Type an incomplete function name e.g. “get” into the editor,

and hit ctrl-space
  Select desired completion value with cursor or mouse

Module 3 3-29

Hit ctrl-space again
for code templates   Code Templates: type

‘for’ and Ctrl-space

Inactive code

 Inactive code will appear grayed out in the
CDT editor

3-30 Module 3

Team Features

3-31 Module 3

“Team” Features

 Eclipse supports integration with multiple
revision control systems (RCS)
 CVS, SVN, Git, and others
 Collectively known as “Team” services

 Many features are common across RCS
 Compare/merge
 History
 Check-in/check-out

 Some differences
 Version numbers
 Branching

3-32 Module 3

CVS Features

 Shows version numbers next to
each resource

 Marks resources that have
changed
 Can also change color (preference

option)

 Context menu for Team
operations

 Compare to latest, another
branch, or history

 Synchronize whole project (or any
selected resources)

3-33 Module 3

File Modification

 Open “calc.c”
 Add comment at line 40
 Save file
 File will be marked to

indicate that is has been
modified

3-34 Module 3

View Changes

  Right-click on “calc.c” and
select Compare
With>Latest from HEAD

  Compare editor will open
showing differences
between local (changed)
file and the original

  Buttons allow changes to
be merged from right to
left

  Can also navigate between
changes using buttons

3-35 Module 3

Revert To The Latest Version

 Right-click on the “shallow” project and select
Replace With>Latest from HEAD

 Review the resources that will be replaced,
then click OK

3-36 Module 3

MPI Features

3-37 Module 3

MPI-Specific Features

  PTP’s Parallel Language Development Tools (PLDT) has
several features specifically for developing MPI code
 Show MPI Artifacts
 Code completion
 Context Sensitive Help for MPI
 Hover Help
 MPI Templates in the editor
 MPI Barrier Analysis

3-38 Module 3

3-39

Show MPI Artifacts

-39

 In Project Explorer, select a project, folder, or a
single source file
  The analysis will be run on the selected resources

Module 3

  Select Show MPI
Artifacts

  Run the analysis by
clicking on drop-
down menu next to
the analysis button

  Works on local and
remote files

-40

MPI Artifact View

  Markers indicate the
location of artifacts in
editor

  The MPI Artifact View
lists the type and
location of each artifact

  Navigate to source code
line by double-clicking
on the artifact

  Run the analysis on
another file (or entire
project!) and its
markers will be added
to the view

  Remove markers via
  Click on column

headings to sort
Module 3 3-40

3-41

MPI Editor Features
  Code completion will show all

the possible MPI keyword
completions

  Enter the start of a keyword
then press <ctrl-space>

-41

 Hover over MPI
API

 Displays the
function prototype
and a description

Module 3

3-42

Context Sensitive Help
  Click mouse, then press help

key when the cursor is within a
function name
  Windows: F1 key
  Linux: ctrl-F1 key
  MacOS X: Help key or

HelpDynamic Help
  A help view appears (Related

Topics) which shows
additional information
(You may need to click on MPI
API in editor again, to
populate)

  Click on the function name to
see more information

  Move the help view within your
Eclipse workbench, if you like,
by dragging its title tab

Module 3 -42

Some special
info has been
added for MPI
APIs

3-43

MPI Templates

 Example:
 MPI send-receive

 Enter:
 mpisr <ctrl-space>

 Expands to a send-receive
pattern

 Highlighted variable names
can all be changed at once

 Type mpi <ctrl-space> <ctrl-
space> to see all templates

Add more templates using Eclipse preferences!
C/C++>Editor>Templates
Extend to other common patterns

-43

 Allows quick entry of common patterns in MPI programming

Module 3

MPI Barrier Analysis
Verify barrier
synchronization in C/
MPI programs

Interprocedural static
analysis outputs:

 For verified programs,
lists barrier statements
that synchronize
together (match)
  For synchronization
errors, reports counter
example that illustrates
and explains the error

3-44

Local
files only

Module 3

MPI Barrier Analysis – Try it

3-45

Run the Analysis:
 In the Project

Explorer, select the
project (or directory,
or file) to analyze

 Select the MPI
Barrier Analysis
action in the pull-
down menu

Module 3

MPI Barrier Analysis – Try It (2)

 No Barrier Errors are found (no pop-up
indicating error); Two barriers are found

3-46 Module 3

MPI Barrier Analysis - views

MPI Barriers view

Simply lists the barriers

Like MPI Artifacts view,
double-click to navigate
to source code line (all
3 views)

Barrier Matches view
Groups barriers that
match together in a
barrier set – all
processes must go
through a barrier in the
set to prevent a
deadlock

Barrier Errors view

If there are errors, a
counter-example
shows paths with
mismatched number
of barriers

3-47 Module 3

Barrier Errors

 Let’s cause a barrier mismatch error
 Open worker.c in the editor by double-clicking

on it in Project Explorer
 At about line 104,

enter a barrier:
  Type MPI_B
 Hit Ctl-space
 Select MPI_Barrier
 Add communicator

arg MPI_COMM_WORLD and closing semicolon

3-48 Module 3

Barrier Errors (2)

 Save the file
 Ctl-S (Mac Command-S) or File > Save
 Tab should lose asterisk indicating file saved

 Run barrier analysis on shallow project again
 Select shallow

project in Project
Explorer first

3-49 Module 3

Barrier Errors (3)

 Barrier Error is found
 Hit OK to dismiss dialog

 Code diverges on line 87
 One path has 2 barriers, other has 1

3-50 Module 3

Double-click
on a row in
Barrier Errors
view to find
the line it
references in
the code

Fix Barrier Error

 Fix the Barrier Error
before continuing

 Double-click on the
barrier in worker.c
to quickly navigate
to it

 Remove the line and save the file
-or-
Right mouse on worker.c in Project Explorer
and do Replace With > Latest from HEAD

3-51 Module 3

Remove Barrier Markers

 Run Barrier Analysis again to remove the error
- and/or -

 Remove the Barrier Markers via the “X” in one
of the MPI Barrier views

3-52 Module 3

Synchronizing the Project

3-53 Module 3

Synchronizing the Project

 Because we will be running on a remote
system, we must also build on that system

 Source files must be available to build
 We will use a synchronized project to do this

 Only needs to be done once for each project
 A synchronized project could have been created

initially

 Files are synchronized automatically when
they are saved

 A full synchronize is also performed prior to a
build

3-54 Module 3

Converting To Synchronized

  Select File>New>Other…
  Open the Remote folder
  Select Convert C/C++ or

Fortran Project to a
Synchronized Project

  Click Next>

3-55 Module 3

Convert Projects Wizard

  Select checkbox next to “shallow”
  For Connection:, click on New…
  Enter “forge” in the Target name

field
  Enter “forge.ncsa.illinois.edu” in the

Host field
  Enter your trainXX user ID in the

User field
  Enter your password in the

Password field
  Click Finish
  Enter “/u/ac/trainXX/shallow” in the

Location field
  Click Finish

3-56 Module 3

Set Active Build Configuration

  The “Active” build configuration determines which system will
be used for both synchronizing and building

  Right-click on the project and select Build
Configurations>Set Active>Remote (Build on remote
machine)

  The project should synchronize immediately

3-57 Module 3

Building the Project

3-58 Module 3

Building the Project

  Click on the button to run the build

  By default, the Build Configuration assumes there is a
Makefile (or makefile) for the project

  In this case, there is no Makefile, so the build will fail

3-59 Module 3

Fixing The Project Properties

  The build command is specified in the project properties
  Open the properties by right-clicking on “shallow” and selecting

Properties
  Click on C/C++ Build
  Uncheck Use default build command
  Enter “make –f Makefile.mk” in the Build Command field
  Click OK

3-60 Module 3

  Click on the button again to run the build
  Build output will be shown in the Console view

Re-Building the Project

3-61 Module 3

Build Problems

  Build problems will be
shown in a variety of
ways
  Marker on file
  Marker on editor line
  Line is highlighted
  Marker on overview ruler
  Listed in the Problems

view

  Double-click on line in
Problems view to go
to location of error

Module 3 3-62

Fix Build Problems

  Save the file
  Rebuild by pressing build

button
  Error markers have been

removed
  Check console for correct

build output

Module 3 3-63

  Fix errors by changing ‘:’ to ‘;’ on line 97

Resource Manager Configuration

3-64 Module 3

3-65

Resource Managers

 PTP uses the term “resource manager” to refer to any
subsystem that controls the resources required for
launching a parallel job.

 Examples:
 Batch scheduler (e.g. LoadLeveler, PBS, SLURM)
 Interactive execution (e.g. Open MPI, MPICH2,

etc.)
 Each resource manager controls one target system
 Resource Managers can be local or remote

Module 3 -65

Monitoring/Runtime Perspectives

  Parallel Runtime Perspective
  Used for legacy PTP Resource Managers

  System Monitoring Perspective
  Used for newer Configurable Resource Managers (since

PTP 5.0)

  Which one is used?

3-66 Module 3

Resource Manager System Monitoring Parallel Runtime

IBM LoadLeveler ✔

IBM Parallel Env ✔

MPICH2 ✔

Open MPI ✔

PBS-Batch-Generic ✔

PBS-Batch-Interactive ✔

Remote Launch ✔

SLURM ✔

3-67

Using a Job Scheduler

-67

  Setting up a resource manager is done in the System Monitoring
perspective
  (For PTP 5.0, this applies to PBS)

  Select Window>Open Perspective>Other
  Choose System Monitoring and click OK

Module 3

System Monitoring Perspective
  System view

  Jobs running
on system

  Active jobs

  Inactive jobs

3-68 Module 3

3-69

Configuring Job Scheduler

  Right-click in Resource
Managers view and
select Add Resource
Manager

  Choose the PBS-
Generic-Batch
Resource Manager
Type

  Select Next>

-69 Module 3

3-70

Configure Control Connection

  Choose Remote Tools for Remote service provider
  Choose the remote connection you made previously
  Click Next>

-70 Module 3

3-71

Configure Monitor Connection

-71

  Keep default Monitor Connection (same as Control Connection),
click Next

Module 3

3-72

Common Configuration

-72

  Keep default name
  Can automatically start Resource Manager (leave unselected

today)
  Click Finish

Module 3

3-73

Starting the Resource Manager

  Right click on new
resource manager and
select Start resource
manager

  If everything is ok,
you should see the
resource manager change
to green

  If something goes wrong,
it will change
to red

-73 Module 3

3-74

System Monitoring

  System view, with
abstraction of nodes

  Active and inactive jobs
  Hover over node to see

job running on node

-74 Module 3

Launching a Job

3-75 Module 3

3-76

  Open the run configuration
dialog Run>Run
Configurations…

  Select Parallel Application
  Select the New

button

Create a Launch Configuration

-76 Module 3

3-77

Complete the Resources Tab

  Enter a name for this
launch configuration, e.g.
“shallow-pbs-batch

  Choose the appropriate
Resource Manager (PBS-
Generic-Batch)

  In Resources tab, select
the PBS resource manager
you just created

  The MPI Command field
allows this job to be run
as an MPI job
  Choose mpirun

  Enter the resources
needed to run this job
  Use 1 nodes, 4 gb memory, 4

cores

  Select the destination
queue – lincoln_debug

Module 4 -77

3-78

Complete the Application Tab

  Select the Application
tab

  Choose the Application
program by clicking the
Browse button and
locating the executable on
the remote machine
  Use the same “shallow”

executable
  Select Display output

from all processes in a
console view

  If Debugger tab has error,
select Debugger: SDM

  Click Run to submit the
application to the job
scheduler

-78 Module 3

3-79

Job Monitoring

  Job initially appears in
“Inactive Jobs”, then in
“Active Jobs”, then returns to
Inactive on completion

  Can view output or error by
right clicking on job, selecting
appropriate output

-79 Module 3

Building before Run

 If projects build prior
to launch, you can
turn it off.
 Go into

Preferences>Run/
Debug and click on
Launching.

 Uncheck "Build (if
required) before
launching”

3-80 Module 3

Advanced Features

Fortran
Project Properties

3-81 Module 3

Project Properties

3-82 Module 3

  Right-click Project
  Select Properties…

 Project properties are settings
that can be changed for each
project

  Contrast with
workspace preferences,
which are the same
regardless of what
project is being edited
  e.g., editor colors
  Set in Window

Preferences
(on Mac, Eclipse
Preferences)

  Careful! Dialog is
very similar

Converting to a Fortran Project

 Are there categories labeled Fortran General
and Fortran Build in the project properties?

3-83 Module 3

No Fortran categories

 If not, the project is not a Fortran Project
 Switch to the Fortran Perspective
 In the Fortran Projects view, right-click on the

project, and click Convert to Fortran Project
 Don’t worry; it’s still a C/C++ project, too

 Every Fortran project is also a C/C++ Project

Project Location

  How to tell where a project
resides?

  In the project properties
dialog, select the
Resource category

3-84 Module 3

Error Parsers

 Are compiler errors not appearing in the
Problems view?
 Make sure the correct error parser is enabled
 In the project properties, navigate to

C++ BuildSettings or Fortran BuildSettings
 Switch to the Error Parsers tab
 Check the error parser(s) for your compiler(s)

3-85 Module 3

Fortran Source Form Settings

3-86 Module 3

 Fortran files are either free form or fixed form;
some Fortran files are preprocessed (#define, #ifdef, etc.)

  Source form determined by filename extension
  Defaults are similar to most Fortran compilers:

 Fixed form: .f .fix .for .fpp .ftn .f77

 Free form: .f08 .f03 .f95 .f90 < unpreprocessed
 .F08 .F03 .F95 .F90 < preprocessed

 Many features will not work if filename extensions
are associated with the wrong source form
(outline view, content assist, search, refactorings, etc.)

Fortran Source Form Settings

3-87 Module 3

  In the project
properties, select
Fortran General
Source Form

  Select source form
for each filename
extension

  Click OK

Enabling Fortran Advanced Features

 Some Fortran features are disabled by default
 Must be explicitly enabled

 In the project properties dialog,
select Fortran General  Analysis/Refactoring

 Click Enable
Analysis/
Refactoring

 Close and re-open
any Fortran editors

 This turns on the
“Photran Indexer”
 Turn it off if it’s slow

3-88 Module 3

Project Properties – Try It!

1.  Convert shallow to a Fortran project

2.  Make sure errors from the GNU Fortran
compiler will be recognized

3.  Make sure *.f90 files are treated as
unpreprocessed, free source form

4.  Make sure search and refactoring will work in
Fortran

3-89 Module 3

Searching

3-90 Module 3

Find/Replace within Editor

 Simple Find within editor buffer
 Ctrl-F (Mac: Command-F)

3-91 Module 3

Mark Occurrences
(C/C++ Only)

 Double-click on a variable in the CDT editor
 All occurrences in the source file are

highlighted to make locating the variable
easier

 Alt-shift-O to turn off

3-92 Module 3

Language-Based Searching
(C/C++ and Fortran)

3-93 Module 3

  “Knows” what things can
be declared in each
language (functions,
variables, classes,
modules, etc.)

  E.g., search for every call
to a function whose name
starts with “get”

  Search can be project- or
workspace-wide

Find References
(C/C++ and Fortran)

 Finds all of the places where a variable,
function, etc., is used
 Right-click on an identifier
 Click ReferencesWorkspace

or ReferencesProject

3-94 Module 3

Open Declaration
(C/C++ and Fortran)

  Jumps to the declaration of
a variable, function, etc.,
even if it’s in a different file

  Right-click on an identifier
  Click Open Declaration

  Can also Ctrl-click (Mac:
Cmd-click) on an identifier
to “hyperlink” to its
declaration

3-95 Module 3

Search – Try It!

1.  Find every call to MPI_Recv in Shallow.

2.  In worker.c, on line 47, there is a declaration
float p[n][m].

a)  What is m?

b)  Where is m defined?

c)  How many times is m used in the project?

3.  Find every function whose name contains the
word time

3-96 Module 3

Advanced Editing

Content Assist and
Code Templates

3-97 Module 3

Content Assist
(C/C++ and Fortran)

3-98 Module 3

 Auto-complete names of variables, functions, etc.
 Type an incomplete function name e.g. “get” into

the editor, and hit Ctrl-Space
 Type more characters to narrow the list
 Use up/down arrow keys to browse the list
 Hit Enter to insert the highlighted completion

Code Templates
(C/C++ and Fortran)

 Auto-complete common code patterns
 For loops/do loops, if constructs, etc.
 Also MPI code templates

 Included with content assist proposals
(when Ctrl-Space is pressed)
 May need to press Ctrl-Space a 2nd time in C/C++
 Press Tab to move between completion fields

3-99 Module 3

Advanced Editing – Try It!

  Open tstep.f90 and retype the last loop nest

  Use the code template to complete the do-loops

  Use content assist to complete variable names

3-100 Module 3

Refactoring and Transformation

3-101 Module 3

Refactoring

  Refactoring is the research
motivation for Photran @ Illinois
  Illinois is a leader in refactoring research

  “Refactoring” was coined in our group
(Opdyke & Johnson, 1990)

  We had the first dissertation…
(Opdyke, 1992)

  …and built the first refactoring tool…
(Roberts, Brant, & Johnson, 1997)

  …and first supported the C preprocessor
(Garrido, 2005)

  Photran’s agenda: refactorings for HPC,
language evolution, refactoring framework

  Photran 7.0: 31 refactorings

(making changes to source code that don’t affect the behavior of the program)

3-102 Module 3

In Java (Murphy-Hill et al., ICSE 2008):

Rename Refactoring
(also available in C/C++)

 Changes the name of a variable, function, etc.,
including every use
(change is semantic, not textual, and can be workspace-wide)

 Only proceeds if the new name will be legal
(aware of scoping rules, namespaces, etc.)

 Select Fortran
Perspective

 Open a source file
 Click in editor view on

declaration of a variable
 Select menu item

RefactorRename
 Or use context menu

 Enter new name

3-103 Module 3

Rename in File
(C/C++ Only)

3-104 Module 3

  Position the caret
over an identifier.

  Press Ctrl+1
(Command+1 on Mac).

  Enter a new name.
Changes are
propagated within
the file as you type.

  Moves statements into a new subroutine, replacing the
statements with a call to that subroutine

  Local variables are passed as arguments

Extract Procedure Refactoring

 Select a sequence of
statements

 Select menu item
RefactorExtract
Procedure…
 Or use context menu

 Enter new name

(also available in C/C++ - “Extract Function”)

3-105 Module 3

  Fortran does not require variable declarations
(by default, names starting with I-N are integer variables; others are reals)

  This adds an IMPLICIT NONE statement and adds explicit
variable declarations for all implicitly declared variables

Introduce IMPLICIT NONE Refactoring

 Introduce in a single file by
opening the file and selecting
RefactorIntroduce
IMPLICIT NONE…

 Introduce in multiple files by
selecting them in the Fortran
Projects view, right-clicking
on the selection, and
choosing
RefactorIntroduce
IMPLICIT NONE… 3-106 Module 3

  Interchange Loops CAUTION: No check for behavior preservation

Loop Transformations
(Fortran only)

3-107 Module 3

do i = 1, 10
 do j = 1, 5
 print *, i*10+j
 enddo
end do

do j = 1, 5
 do i = 1, 10
 print *, i*10+j
 enddo
end do

  Unroll Loop

do i = 1, 10
 print *, 10*i
end do

do i = 1, 10, 5
 print *, 10*(i+0)
 print *, 10*(i+1)
 print *, 10*(i+2)
 print *, 10*(i+3)
 print *, 10*(i+4)
end do

Unroll 5 times

Refactoring – Try It!

In tstep.f90…

1.  Make the tstep subroutine IMPLICIT NONE

2.  Interchange the loops in all three of the
double loop nests

  Does this improve performance? If not, undo it.

3.  Unroll the inner loop in each loop nest

  Does this improve performance? If not, undo it.

3-108 Module 3

Module 4

Module 4: Parallel Debugging

 Objective
 Learn the basics of debugging parallel programs

 Contents
 Launching a debug session
 The Parallel Debug Perspective
 Controlling sets of processes
 Controlling individual processes
 Parallel Breakpoints
 Terminating processes

4-0

Module 5

Debugging an Application

  Debugging requires interactive access to the application
  Since PBS is for batch execution, we will use Open MPI to

provide interactive access to the machine (PBS will
support interactive execution in the future)

  First switch to the Parallel Runtime perspective if not
already there

5-1

Module 5

Start the Resource Manager

  If the Open_MPI Resource manager is not already
started (green icon), start it now:
  Right-click on the resource manager and select

Start Resource Manager from the menu

5-2

Module 5

Create a Debug Configuration

  A debug configuration is
essentially the same as a run
configuration (like we used
in modules 3 & 4)

  We will re-use the existing
configuration and add debug
information

  Use the drop-down next to
the debug button (bug icon)
instead of run button

  Select Debug
Configurations… to open
the Debug Configurations
dialog

5-3

Configure the Debugger Tab

  Select Debugger tab
  Select the shallow

configuration

  Make sure SDM is
selected in the
Debugger dropdown

  Check the debugger
path is correct
  Should be the path to

the sdm executable on
the remote system

  Debugger session
address should not
need to be changed

  Click on Debug to
launch the program

Module 5 5-4

Module 5

  Parallel Debug
view shows job
and processes
being debugged

  Debug view shows
threads and call
stack for individual
processes

  Source view
shows a current
line marker for all
processes

The Parallel Debug Perspective (1)

5-5

Module 5

The Parallel Debug Perspective (2)

  Breakpoints view
shows breakpoints
that have been set
(more on this later)

  Variables view
shows the current
values of variables
for the currently
selected process in
the Debug view

  Outline view (from
CDT) of source
code

5-6

Module 5

Stepping All Processes

  The buttons in the
Parallel Debug View
control groups of
processes

  Click on the Step Over
button

  Observe that all process
icons change to green,
then back to yellow

  Notice that the current
line marker has moved to
the next source line

5-7

Module 5

Stepping An Individual Process
  The buttons in the

Debug view are used
to control an
individual process, in
this case process 0

  Click the Step Over
button

  You will now see two
current line markers,
the first shows the
position of process 0,
the second shows the
positions of processes
1-3

5-8

Module 5

Process Sets (1)

  Traditional debuggers apply operations to a single
process

  Parallel debugging operations apply to a single process
or to arbitrary collections of processes

  A process set is a means of simultaneously referring to
one or more processes

5-9

Module 5

Process Sets (2)

  When a parallel debug session is first started, all
processes are placed in a set, called the Root set

  Sets are always associated with a single job
  A job can have any number of process sets
  A set can contain from 1 to the number of processes in

a job

5-10

Module 5

Operations On Process Sets

  Debug operations on the
Parallel Debug view
toolbar always apply to the
current set:
  Resume, suspend, stop,

step into, step over, step
return

  The current process set is
listed next to job name
along with number of
processes in the set

  The processes in process
set are visible in right hand
part of the view

Root set = all processes

5-11

Module 5

Create set Remove
from set

Delete
set

Change
current set

Managing Process Sets

  The remaining icons in the toolbar of the Parallel
Debug view allow you to create, modify, and delete
process sets, and to change the current process set

5-12

Module 5

Creating A New Process Set
  Select the processes

you want in the set by
clicking and dragging,
in this case, the last
three

  Click on the Create
Set button

  Enter a name for the
set, in this case
workers, and click OK

  You will see the view
change to display only
the selected processes

5-13

Module 5

Stepping Using New Process Set
  With the workers set

active, click the Step
Over button

  You will see only the
first current line
marker move

  Step a couple more
times

  You should see two line
markers, one for the
single master process,
and one for the 3
worker processes

5-14

Module 5

Process Registration

 Process set commands apply to groups of
processes

 For finer control and more detailed
information, a process can be registered and
isolated in the Debug view

 Registered processes, including their stack
traces and threads, appear in the Debug view

 Any number of processes can be registered,
and processes can be registered or
un-registered at any time

5-15

Module 5

Process Registration (2)
  By default, process 0 was

registered when the debug
session was launched

  Registered processes are
surrounded by a box and
shown in the Debug view

  The Debug view only shows
registered processes in the
current set

  Since the “workers” set
doesn’t include process 0, it
is no longer displayed in the
Debug view

5-16

Module 5

Registering A Process

  To register a process,
double-click its process
icon in the Parallel
Debug view or select a
number of processes and
click on the register
button

  To un-register a process,
double-click on the
process icon or select a
number of processes and
click on the unregister
button

Individual
(registered)
processes

Groups (sets)
of processes

5-17

Module 5

Current Line Marker

 The current line marker is used to show the
current location of suspended processes

 In traditional programs, there is a single
current line marker (the exception to this is
multi-threaded programs)

 In parallel programs, there is a current line
marker for every process

 The PTP debugger shows one current line
marker for every group of processes at the
same location

5-18

Module 5

Multiple processes marker

Registered process marker

Un-registered process marker

Colors And Markers

  The highlight color depends on
the processes suspended at
that line:
  Blue: All registered process(es)
  Orange: All unregistered process

(es)
  Green: Registered or unregistered

process with no source line (e.g.
suspended in a library routine)

  The marker depends on the
type of process stopped at that
location

  Hover over marker for more
details about the processes
suspend at that location

5-19

Module 5

  Apply only to processes in the particular set that is
active in the Parallel Debug view when the breakpoint
is created

  Breakpoints are colored depending on the active
process set and the set the breakpoint applies to:
 Green indicates the breakpoint set is the same

as the active set.
  Blue indicates some processes in the breakpoint set are

also in the active set (i.e. the process sets overlap)
  Yellow indicates the breakpoint set is different from the

active set (i.e. the process sets are disjoint)
  When the job completes, the breakpoints are

automatically removed

Breakpoints

5-20

Module 5

Creating A Breakpoint
  Select the process set that

the breakpoint should apply
to, in this case, the workers
set

  Double-click on the left edge
of an editor window, at the
line on which you want to set
the breakpoint, or right click
and use the Parallel
BreakpointToggle
Breakpoint context menu

  The breakpoint is displayed
on the marker bar

5-21

Module 5

Hitting the Breakpoint
  Switch back to the Root set

by clicking on the Change
Set button

  Click on the Resume button
in the Parallel Debug view

  In this example, the three
worker processes have hit the
breakpoint, as indicated by
the yellow process icons and
the current line marker

  Process 0 is still running as its
icon is green

  Processes 1-3 are suspended
on the breakpoint

5-22

Module 5

More On Stepping
  The Step buttons are only

enabled when all processes
in the active set are
suspended (yellow icon)

  In this case, process 0 is still
running

  Switch to the set of
suspended processes (the
workers set)

  You will now see the Step
buttons become enabled

5-23

Module 5

Breakpoint Information

 Hover over breakpoint icon
 Will show the sets this breakpoint applies to

 Select Breakpoints view
 Will show all breakpoints in all projects

5-24

 Use the menu in the breakpoints view to group
breakpoints by type

 Breakpoints sorted by breakpoint set (process
set)

Module 5

Breakpoints View

5-25

Module 5

  Apply to all processes and all jobs
  Used for gaining control at debugger startup
  To create a global breakpoint

  First make sure that no jobs are selected (click in white
part of jobs view if necessary)

 Double-click on the left edge of an editor window
 Note that if a job is selected, the breakpoint will apply to

the current set

Global Breakpoints

5-26

Module 5

Terminating A Debug Session

  Click on the Terminate
icon in the Parallel
Debug view to
terminate all processes
in the active set

  Make sure the Root set
is active if you want to
terminate all processes

  You can also use the
terminate icon in the
Debug view to
terminate the currently
selected process

5-27

Module 5: Performance Tuning
and Analysis Tools

 Objective
 Become familiar with tools integrated with PTP, to help

enhance performance of parallel applications

 Contents

 Performance Tuning and other external tools:
 PTP External Tools Framework (ETFw), TAU

Hands-on exercise using TAU with PTP
 Parallel Performance Wizard (PPW)

 MPI Analysis: GEM (Graphical Explorer of MPI Programs)

Module 5 5-0

PTP/External Tools Framework
formerly “Performance Tools Framework”

Goal:
 Reduce the “eclipse plumbing”

necessary to integrate tools
 Provide integration for

instrumentation, measurement, and
analysis for a variety of performance
tools

  Dynamic Tool Definitions:
Workflows & UI

  Tools and tool workflows are
specified in an XML file

  Tools are selected and configured in
the launch configuration window

  Output is generated, managed and
analyzed as specified in the
workflow

Module 5 5-1

PTP TAU plug-ins
http://www.cs.uoregon.edu/research/tau

  TAU (Tuning and Analysis Utilities)
  First implementation of External Tools Framework (ETFw)
  Eclipse plug-ins wrap TAU functions, make them available

from Eclipse
  Compatible with Photran and CDT projects and with PTP

parallel application launching
  Other plug-ins launch Paraprof from Eclipse too

Module 5 5-2

TAU Integration with PTP

 TAU: Tuning and
Analysis Utilities
 Performance data

collection and analysis
for HPC codes

 Numerous features
 Command line interface

 The TAU Workflow:
 Instrumentation
 Execution
 Analysis

Module 7 7-3

TAU/ETFw Hands-On

 Performance analysis/External tools use the same
launch configurations and resource managers as
debugging/launching

 The relevant tools must be in the $PATH on the
remote machine

 Select the Profile button’s “Profile Configurations…”
option to begin:

Module 7 7-4

TAU/ETFw Hands-On (2)

 Select an existing launch configuration or
create a new one

 Select the Performance Analysis tab and
choose the TAU tool set

Module 7 7-5

TAU/ETFw Hands-On (3)

 Select the TAU tab and
choose a Makefile with
MPI, PDT and PAPI options

 Select PAPI counters
 Other options are available

but not needed here
 Hit ‘Profile’

Module 7 7-6

TAU/ETFW Hands-On (4)

 The application will rebuild and launch.
 Performance data will appear in the

Performance Data Management view
 Double click the new entry to view in ParaProf
 Right click on a function bar and select Show

Source Code for source callback to Eclipse

Module 7 7-7

Parallel Performance Wizard (PPW)
  Full-featured performance tool for

PGAS programming models
  Currently supports UPC, SHMEM, and

MPI
  Extensible to support other models
  PGAS support by way of Global Address

Space Performance (GASP) interface
(http://gasp.hcs.ufl.edu)

  PPW features:
  Easy-to-use scripts for backend data

collection
  User-friendly GUI with familiar

visualizations
  Advanced automatic analysis support

  More information and free
download: http://ppw.hcs.ufl.edu

Module 7 7-8

  We implement the ETFw to make
PPW’s capabilities available within
Eclipse
  Compile with instrumentation,

parallel launch with PPW
  Generates performance data file in

workspace, PPW GUI launched

  PPW is often used for UPC
application analysis
  ETFw extended to support UPC
  Many UPC features in PTP

  For more information:

 http://ppw.hcs.ufl.edu
 ppw@hcs.ufl.edu

PPW Integration via ETFw

Module 7 7-9

GEM
Graphical Explorer of MPI Programs

 Contributed to PTP by University of Utah in 2009
  Available with PTP since v3.0

 Dynamic verification for MPI C/C++ that detects:
 Deadlocks
 MPI object leaks
  Functionally irrelevant barriers
  Local assertion violations

 Offers rigorous coverage guarantees
  Complete nondeterministic coverage for MPI
  Communication / synchronization behaviors
 Determines relevant interleavings, replaying as necessary

Module 7 7-10

GEM - Overview

(Image courtesy of Steve Parker, U of Utah)

7-11

  Front-end for In-situ Partial Order
(ISP), Developed at U. Utah

  Introduces “push-button”
verification into the MPI
development cycle for PTP

  Automatically instruments and runs
user code, displaying post
verification results

  Variety of views & tools to facilitate
debugging and code understanding

GEM – Views & Tools
 Analyzer View

 Highlights bugs, and facilitates
 post-verification review / debugging

Module 7 7-12

Browser View
Groups & helps quickly localizes

MPI problems. Maps errors to
source code line in editor

GEM – Views & Tools (cont.)

13

 Happens-Before Viewer
Shows required orderings and communication matches

(currently an external tool)

Module 7 7-14

Using GEM – ISP Installation

 ISP itself must be installed prior to using GEM

 Download ISP at http://www.cs.utah.edu/fv/ISP

 Make sure libtool, automake and autoconf are installed.

 Just untar isp-0.2.0.tar.gz into a tmp directory:
 Configure and install

 ./configure
 make
 make install

  This installs binaries and necessary scripts

Using GEM
 Create local or remote MPI C/C++ project

 Make sure your project builds correctly
 Managed build and Makefile projects supported

 Set preferences via GEM Preference Pages
 From the trident icon or context

menus user can:

 Formally Verifying MPI Program
 Launches verification engine ISP
 Generates log file for post-

verification analysis
 Opens relevant GEM views

Module 7 7-15

GEM Analyzer View
 Reports program errors, and runtime statistics

 Debug-style source code stepping of interleavings
 Point-to-point / Collective Operation matches
 Internal Issue Order / Program Order views
 Rank Lock feature – focus on a particular process

 Also controls:
 Call Browser
 Happens Before Viewer launch
  Re-launching of GEM

Module 7 7-16

GEM Browser View

Module 7 7-17

 Tabbed browsing for each type of MPI error/warning

 Each error/warning mapped to offending line of
source code in Eclipse editor

 One click to visit the Eclipse editor, to examine:
 Calls involved in deadlock
 Irrelevant barriers
 MPI Object Leaks sites
 MPI type mismatches
  Local Assertion Violations

GEM – Help Plugin
Extensive how-to sections, graphical aids and

trouble shooting section

Module 7 7-18

GEM/ISP Success Stories
 Umpire Tests

  http://www.cs.utah.edu/fv/ISP-Tests
 Documents bugs missed by tests, caught by ISP

 MADRE (EuroPVM/MPI 2007)
  Previously documented deadlock detected

 N-Body Simulation Code
  Previously unknown resource leak caught during
 EuroPVM/MPI 2009 tutorial !

 Large Case Studies
  ParMETIS, MPI-BLAST, IRS (Sequoia Benchmark), and a few

SPEC-MPI benchmarks could be handled

 Full Tutorial including LiveDVD ISO available
  Visit http://www.cs.utah.edu/fv/GEM

Module 7 7-19

Module 7 7-20

GEM Future Plans

 Incorporation of HB Viewer into GEM as a new view

 Add Pthread support to visualize Pthread calls made
from within MPI space

GEM Future Plans
 GEM will serve as a front-end for other tools

 Integration of Distributed Analyzer of MPI Programs
(DAMPI), developed at University of Utah
 ISP scales to 10s of processes
 DAMPI scales to 1000s of processes (C/C++/Fortran)
 Decentralized scheduler uses Lamport Clocks

Module 7 7-21

Use ISP at small scale,
then launch DAMPI at

scale on a cluster 	

Performance Tools: Summary

 Performance Tools integrated with PTP
 Performance Tools integrated with PTP help tune parallel

applications
 External Tools Framework (ETFw) eases integration of

existing (command-line, etc.) tools
 TAU Performance Tuning uses ETFw
 PPW (Parallel Perf. Wizard) uses ETFw for UPC analysis

 MPI Analysis: GEM

 A diversity of contributors too!
 We welcome other contributions. Let us help!

Module 7 7-22

Module 6: Other Tools and
Wrap-up

 Objective
 How to find more information on PTP
 Learn about other tools related to PTP
 See PTP upcoming features

 Contents
 Links to other tools, including performance tools
 Planned features for new versions of PTP
 Additional documentation
 How to get involved

Module 6 6-0

NCSA
HPC Workbench

  Tools for NCSA Blue Waters
  http://www.ncsa.illinois.edu/BlueWaters/
  Sustained Petaflop system

  Based on Eclipse and PTP
  Includes some related tools

 Performance tools
 Workflow tools (https://wiki.ncsa.uiuc.edu/

display/MRDPUB/MRD+Public+Space+Home
+Page)

  Part of the enhanced computational environment
described at:
 http://www.ncsa.illinois.edu/BlueWaters/ece.html

Module 6 6-1

NCSA HPC Workbench Coding &
Analysis
(C/C++, Fortran)

Parallel Debugger

PTP
Launching &
Monitoring

Performance
Tuning

Workflow

6-2 Module 6

Planned PTP Future Work

 Scalability improvements
  UI to support 1M processes
  Optimized communication protocol
  Very large application support

 Resource Managers
  More implementations of configurable resource managers

 Synchronized project improvements
  Conversion wizard
  Resolving merge conflicts

 Enhancements to the debugger
  Stability enhancements
  Transition to Scalable Communication Infrastructure (SCI)

6-3 Module 6

Useful Eclipse Tools

  Linux Tools (autotools, valgrind, Oprofile, Gprof)
  http://eclipse.org/linuxtools

  Python
  http://pydev.org

  Ruby
  http://www.aptana.com/products/radrails

  Perl
  http://www.epic-ide.org

  Git
  http://www.eclipse.org/egit

  VI bindings
  Vrapper (open source) - http://vrapper.sourceforge.net
  viPlugin (commercial) - http://www.viplugin.com

6-4 Module 6

Online Information

 Information about PTP
 Main web site for downloads, documentation, etc.

 http://eclipse.org/ptp
 Wiki for designs, planning, meetings, etc.

 http://wiki.eclipse.org/PTP
 Articles and other documents

 http://wiki.eclipse.org/PTP/articles

 Information about Photran
 Main web site for downloads, documentation, etc.

 http://eclipse.org/photran
 User’s manuals

 http://wiki.eclipse.org/PTP/photran/
documentation

6-5 Module 6

Mailing Lists

  PTP Mailing lists
 Major announcements (new releases, etc.) - low volume

 http://dev.eclipse.org/mailman/listinfo/ptp-announce

  User discussion and queries - medium volume
 http://dev.eclipse.org/mailman/listinfo/ptp-user

 Developer discussions - high volume
 http://dev.eclipse.org/mailman/listinfo/ptp-dev

  Photran Mailing lists
  User discussion and queries

  http://dev.eclipse.org/mailman/listinfo/photran

 Developer discussions –
  http://dev.eclipse.org/mailman/listinfo/photran-dev

6-6 Module 6

Getting Involved

 See http://eclipse.org/ptp
 Read the developer documentation on the wiki
 Join the mailing lists
 Attend the monthly developer meetings

 Conf Call Monthly: Second Tuesday, 1:00 pm ET
  Details on the PTP wiki

 Attend the monthly user meetings
 Teleconference Monthly
 Each 4th Wednesday, 2:00 pm ET
 Details on the PTP wiki

PTP will only succeed with your participation!

6-7 Module 6

Thanks for attending
We hope you found it useful	

PTP Tutorial Feedback

 Please complete feedback form
 Your feedback is valuable!

6-8 Module 6

	ptp-00-sc11.ppt
	ptp-01-install.ppt
	ptp-02-intro.ppt
	ptp-03-dev.ppt
	ptp-04-debug.ppt
	ptp-05-perf.ppt
	ptp-06-wrapup.ppt

