
Eclipse and the Parallel Tools Platform

Portions of this material are supported by or based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under its Agreement No. HR0011-07-9-0002, the
United States Department of Energy under Contract No. DE-FG02-06ER25752 and the SI2-SSI
Productive and Accessible Development Workbench for HPC Applications, which is supported by
the National Science Foundation under award number OCI 1047956

Jay Alameda, NCSA
alameda@illinois.edu

Wyatt Spear, U. Oregon
wspear@cs.uoregon.edu

Beth Tibbitts, NCSA
beth@tibweb.com

April 10-11, 2014

Tutorial Outline – Day 1
Time (Tentative!) Module Topics Presenter

8:30-10:00

1.  Installation & Overview
2.  Eclipse Basics

ª  Installation & Overview of Eclipse and PTP,
Survey student expectations / Adjust agenda

ª  Eclipse architecture & organization overview
ª  Creating a synchronized C project from CVS

 Beth/Jay

10:00-10:15 BREAK

10:15-12:15 3. Editor features, MPI

4. Build/run

ª  Editor features; MPI Features

ª  Building w/Makefile
ª  Target configurations and launching a parallel app
ª  Including Modules (Build Environment Mgmt)

Beth

Jay

12:15 – 1:30 Lunch

1:30-3:00 5. Fortran
6. Adv. Features
7. NCSA features
8. Parallel Debugging

ª  Fortran PTP/Eclipse projects, editor, features
ª  Searching, Refactoring, NCSA features

ª  Debugging an MPI Program

Jay

Beth

3:00-3:15 BREAK

3:15-4:45

9/10. Performance Tuning
& Analysis Tools
12. gprof/gcov

ª  TAU, External Tools FrameWork

ª  Linux tools: Gprof/Gcov

Wyatt

Jay/Wyatt

Tutorial Outline – Day 2
Time (Tentative!) Module Topics Presenter

8:30-10:00

9/10. Perf Tools con’t
OTHER TOPICS

ª  Continue…
ª  Other topics, student requests, etc.

 Wyatt/Jay/Beth

10:00-10:15 BREAK

10:15-12:15 20. Other Tools/Wrapup ª  PTP Other tools, website, mailing lists, etc
ª  Upcoming features

Beth

12:15 – 1:30 Lunch

Final Slides, Installation
Instructions

ª Please go to http://
wiki.eclipse.org/PTP/tutorials/
SEA2014 for slides and installation
instructions

Installation

ª Objective
ª To learn how to install Eclipse and PTP

ª Contents
ª System Prerequisites
ª Eclipse Download and Installation of “Eclipse for

Parallel Application Developers”
ª Installation Confirmation
ª Updating the PTP within your Eclipse to the latest

release

Installation Install-1

System Prerequisites
ª Local system (running Eclipse)

ª Linux (just about any version)
ª MacOSX (10.5 Leopard or higher)
ª Windows (XP on)

ª Java: Eclipse requires Sun or IBM Java
ª Only need Java runtime environment (JRE)
ª Java 1.6 or higher

ª Java 1.6 is the same as JRE 6.0
ª The GNU Java Compiler (GCJ), which comes standard

on Linux, will not work!
ª OpenJDK, distributed with some Linux distributions,

comes closer to working, but should not be used.
ª See http://wiki.eclipse.org/PTP/installjava

Install-2 Installation

Eclipse Packages
ª The current version of Eclipse (4.3) is also

known as “Kepler”
ª Eclipse is available in a number of different

packages for different kinds of development
ª http://eclipse.org/downloads

ª For PTP, we recommend the all-in-one
download:
ª Eclipse for Parallel Application Developers

We often call this the “Parallel Package”

Install-3 Installation

New! See
next slide
for update

New! Parallel Package updated
ª  The public Parallel Package on eclipse.org/downloads is

only updated three times yearly
ª  We are now building updated all-in-one packages with

new releases of PTP already installed.
ª  Go to http://eclipse.org/ptp/downloads.php
ª  Under File Downloads:
ª  Click on the link, and on the file downloads page, see

Parallel Application Developers Package and
download the appropriate file for your platform
ª  Mac OS X
ª  Linux X86 and X86_64
ª  Windows x86 and x86_64

ª  Unzip or untar it

Install-4 Installation

Exercise

1.  Download the “Eclipse for Parallel Application
Developers” package to your laptop
ª  Your tutorial instructions will provide the location of

the package
ª  Make sure you match the architecture with that of

your laptop
2.  If your machine is Linux or Mac OS X, untar

the file
ª  On Mac OS X you can just double-click in the Finder

3.  If your machine is Windows, unzip the file
4.  This creates an eclipse folder containing the

executable as well as other support files and
folders

Install-5 Installation

Starting Eclipse
ª  Linux

ª  From a terminal window, enter
“<eclipse_installation_path>/eclipse/eclipse &”

ª  Mac OS X
ª  From finder, open the eclipse folder where you installed
ª Double-click on the Eclipse application
ª Or from a terminal window

ª  Windows

ª Open the eclipse folder
ª Double-click on the eclipse executable

Install-6 Installation

ª Eclipse prompts for a workspace location at
startup time

ª The workspace contains all user-defined data
ª Projects and resources such as folders and files
ª The default workspace location is fine for this tutorial

Specifying A Workspace

The prompt can be
turned off

Install-7 Installation

Eclipse Welcome Page

ª Displayed when Eclipse is run for the first time
Select “Go to the workbench”

Install-8
Installation

Checking for PTP Updates

ª From time-to-time there may be newer PTP
releases than the Kepler release
ª Kepler and “Parallel package” updates are released

only in September and February

ª PTP maintains its own update site with the
most recent release
ª Bug fix releases can be more frequent than base

Eclipse (e.g. Kepler), and what is within the parallel
package

ª You must enable (and install from) the PTP-
specific update site before the updates will be
found

Install-9 Installation

Updating PTP
ª  Now select Help>Install New Software…

ª  In the Work With: dropdown box, select this update site,
or enter it:
http://download.eclipse.org/tools/ptp/updates/kepler

Install-10 Installation

Updating PTP (2)

ª  Easiest option is to check everything - which updates
existing features and adds a few more

Note: for this tutorial, this installs extra features we’ll
refer to later anyway (GEM, TAU)

ª  Select Next to continue updating PTP
ª  Select Next to confirm features to install

Install-11 Installation

Updating PTP (3)

ª  Accept the License agreement and select Finish

Install-12 Installation

Updating PTP - restart

ª  Select Yes when prompted to restart Eclipse

Install-13 Installation

Updating Individual Features

ª  It’s also possible (but a bit tedious) to update features
without adding any new features
ª  Open each feature and check the ones you want to update

ª  Icons indicate: Grey plug: already installed

 Double arrow: can be updated
 Color plug: Not installed yet

ª  Note: if network is slow, consider unchecking:

Install-14 Installation

Restart after Install

ª  If any new top-level features
are installed, they will be
shown on the welcome screen

ª  We only updated PTP, so we
land back at C/C++
Perspective

Install-15 Installation

ª  Help>About or Eclipse > About Eclipse …
will indicate the release of PTP installed

ª  Further Help>Check for Updates will find future updates on
the PTP Update site

Exercise

1.  Launch Eclipse and select the default
workspace

2.  Configure Eclipse to check for PTP updates
3.  Update all PTP features to the latest level
4.  Install the optional features of PTP, including

TAU and GEM
–  Selecting all features accomplishes 3. and 4.

5.  Restart Eclipse once the installation is
completed

Install-16 Installation

Intro-0 Introduction

Introduction

ª Objective
ª To introduce the Eclipse platform and PTP

ª Contents
ª New and Improved Features
ª What is Eclipse?
ª What is PTP?

Intro-1

What is Eclipse?

ª A vendor-neutral open-source workbench for
multi-language development

ª A extensible platform for tool integration
ª Plug-in based framework to create, integrate

and utilize software tools

Introduction

Intro-2

Eclipse Features

ª Full development lifecycle support
ª Revision control integration (CVS, SVN, Git)
ª Project dependency management
ª Incremental building
ª Content assistance
ª Context sensitive help
ª Language sensitive searching
ª Multi-language support
ª Debugging

Introduction

Intro-3

Parallel Tools Platform (PTP)

ª  The Parallel Tools Platform aims to provide a highly
integrated environment specifically designed for parallel
application development

ª  Features include:
ª  An integrated development environment (IDE) that

supports a wide range of parallel architectures and runtime
systems

ª  A scalable parallel debugger
ª  Parallel programming tools

(MPI, OpenMP, UPC, etc.)
ª  Support for the integration

of parallel tools
ª  An environment that simplifies the

end-user interaction with parallel systems
ª  http://www.eclipse.org/ptp

Introduction

Eclipse PTP Family of Tools
Coding & Analysis

(C, C++, Fortran)

Parallel Debugging

Launching &
Monitoring

Performance Tuning
(TAU, PPW, …) Intro-4 Introduction

How Eclipse is Used

Intro-5

Remote
Source
Code

Introduction

Local
Source
Code

Edit/Build

Launch/Monitor

Debugging

Performance Tuning

Eclipse Basics
ª Objective

ª Learn about basic Eclipse workbench concepts:
projects,

ª Learn about projects: local, synchronized, remote

ª Contents
ª Workbench components: Perspectives, Views, Editors
ª Local, remote, and synchronized projects
ª Learn how to create and manage a C project
ª Learn about Eclipse editing features

Eclipse Basics Basic-0

Eclipse Basics
ª  A workbench contains the menus, toolbars, editors and

views that make up the main Eclipse window

perspective Eclipse Basics

view
view

view

editor

ª  The workbench represents
the desktop development
environment
ª  Contains a set of tools

for resource mgmt
ª  Provides a common way

of navigating through
the resources

ª  Multiple workbenches
can be opened at the
same time

ª  Only one workbench can
be open on a workspace
at a time

Basic-1

Perspectives

ª Perspectives define the layout of views and
editors in the workbench

ª They are task oriented, i.e. they contain
specific views for doing certain tasks:
ª C/C++ Perspective for manipulating compiled code
ª Debug Perspective for debugging applications
ª System Monitoring Perspective for monitoring

jobs
ª  You can easily switch between perspectives
ª If you are on the Welcome screen now, select
“Go to Workbench” now

Eclipse Basics Basic-2

Switching Perspectives

ª  Three ways of changing
perspectives

1.  Choose the Window>Open
Perspective menu option
Then choose Other…

2.  Click on the Open Perspective button in the
upper right corner of
screen (hover over it to
see names)

3.  Click on a
perspective
shortcut button

Eclipse Basics Basic-3

Which Perspective?

Eclipse Basics Basic-4

ª The current perspective is displayed in the title
bar

Views

ª The workbench window is
divided up into Views

ª The main purpose of a view is:
ª To provide alternative ways of presenting information
ª For navigation
ª For editing and modifying information

ª Views can have their own menus and toolbars
ª Items available in menus and toolbars are

available only in that view
ª Menu actions only

apply to the view
ª Views can be resized

view

view view

Eclipse Basics Basic-5

Stacked Views

ª Stacked views appear as tabs
ª Selecting a tab brings that view to the

foreground

Eclipse Basics Basic-6

Expand a View

ª Double-click on a view/editor’s tab to fill the
workbench with its content;

ª Repeat to return to original size

ª Window > Reset Perspective
returns everything to original positions

Basic-7 Eclipse Basics

Double
click

Double
click

Help

ª  To access help
ª  Help>Help Contents
ª  Help>Search
ª  Help>Dynamic Help

ª  Help Contents provides
detailed help on different
Eclipse features in a
browser

ª  Search allows you to
search for help locally, or
using Google or the Eclipse
web site

ª  Dynamic Help shows help
related to the current
context (perspective, view,
etc.)

Eclipse Basics Basic-8

Eclipse Preferences
ª  Eclipse Preferences allow

customization of almost
everything

ª  To open use
ª  Mac: Eclipse>Preferences…
ª  Others:

Window>Preferences…

ª  The C/C++ preferences
allow many options to be
altered

ª  In this example you can
adjust what happens in
the editor as you type.

Eclipse Basics Basic-9

Preferences Example
More C/C++ preferences:
ª In this example the

Code Style preferences
are shown

ª These allow code to be
automatically
formatted in different
ways

Eclipse Basics Basic-10

Exercise
1.  Change to a different perspective
2.  Experiment with moving and resizing views

ª  Move a view from a stack to beside another view
ª  Expand a view to maximize it; return to original size

3.  Save the perspective
4.  Reset the perspective
5.  Open Eclipse preferences
6.  Search for “Launching”
7.  Make sure the “Build (if required) before

launching” setting is disabled

Eclipse Basics Basic-11

Optional Exercise
Best performed after learning about projects, CVS, and editors

1.  Use source code formatting to format a source file, or a region
of a source file
ª  Use Source>Format menu

2.  In Eclipse Preferences, change the C/C++ source code style
formatter, e.g.
ª  Change the indentation from 4 to 6
ª  Make line wrapping not take effect until a line has a

maximum line width of 120, instead of the default 80
ª  Save a (new) profile with these settings
ª  Format a source file with these settings

3.  Revert the file back to the original – experiment with
ª  Replace with HEAD, replace with previous from local history,

or reformat using original style

Eclipse Basics Basic-12

Creating a Synchronized Project
ª Objective

ª Learn how to create and use synchronized projects
ª Learn how to create a sync project

ª From a source code repository in CVS, or
ª Import from source on a remote machine

ª Contents
ª Eclipse project types
ª Creating a synchronized project from CVS or remote dir
ª Using synchronize filters
ª Remote Terminal view
ª Converting an existing project to synchronized

Synchronized Projects Sync-0

Project Location
ª Local

ª Source is located on local machine, builds happen locally
ª This is the default Eclipse model

ª Synchronized
ª Source is located on both local and remote machine(s),

then kept in synchronization by Eclipse
ª Building and launching happens remotely

(can also happen locally)
ª Used mainly for scientific and supercomputing

applications
ª There are also remote-only projects, but these

have limitations and are not covered here

Synchronized Projects Sync-1

Sync-2

Synchronized Projects
ª  Projects types can be:

-2

File	
 Service	
 Index	
 Service	

Launch	
 Service	

Build	
 Service	

Debug	
 Service	

Local	
 source	

code	

Source	
 code	

copy	

Local	
 Remote	

Run	

Debug
	

Compute	

Edit	
 Search/Index	

NavigaAon	

Synchronize	

Executable	

Synchronized Projects

Revision Control Systems (RCS)
ª Eclipse supports a range of RCS, such as CVS,

Git, and Subversion (and others)
ª These are distinct from synchronized projects
ª RCS can be used in conjunction with synchronized

projects
ª Synchronized projects are typically not used for

revision control

Synchronized Projects Sync-3

Sync-4

Synchronized Project Creation

ª Local -> Remote
ª Projects start out local then are synchronized to a

remote machine
ª Three options

ª Created from scratch
ª Imported from local filesystem
ª Imported from source code repository

ª Remote -> Local
ª Projects start out on remote machine then are

synchronized to the local system
ª Two options

ª Already on remote system
ª Checked out from source code repository

-4 Synchronized Projects

A

B

slides

slides

Sync-5

C, C++, and Fortran Projects
Build types

ª Makefile-based
ª Project contains its own makefile (or makefiles) for

building the application – or other build command
ª Managed

ª Eclipse manages the build process, no makefile
required

-5 Synchronized Projects

SCENARIO A:
Check out source
code from CVS

repository

Sync-6 Synchronized
Projects

A

ª  Switch to CVS Repository
Exploring perspective
ª  Window > Open Perspective > Other…
ª  Select CVS Repository Exploring
ª  Select OK

ª  Right click in CVS Repositories
view and select New>Repository
Location…

Importing a Project from CVS

Sync-7

A

Synchronized Projects

ª  Enter Host: cvs.ncsa.uiuc.edu
ª  Repository path:

/CVS/ptp-samples

ª  For anonymous access:
ª  User: anonymous
ª  No password is required
ª  Connection type: pserver (default)

ª  For authorized access:
ª  User: your userid
ª  Password: your password
ª  Connection type: change to extssh

ª  Select Finish

Add CVS Repository

Sync
-8

A

Synchronized Projects

ª  Expand the repository location
ª  Expand HEAD
ª  Expand samples
ª  Right click on shallow and select

Check Out As…
ª  On Check Out As dialog, select

Finish

Checking out the Project

Sync
-9

The default of
“Check out as a
project configured
using the New
Project Wizard” is
what we want

A

Synchronized Projects

Next: New Project Wizard

Sync-10 Synchronized Projects

ª Expand Remote
ª Select

Synchronized
C/C++ Project

ª Select Next>

ª If asked to select a
tag, select HEAD
and hit FINISH

A

SCENARIO B:
Source code on
remote machine

Sync-11

B

Synchronized Projects

Source Code for project

ª Source code exists on remote target

Sync-12 Synchronized Projects

B

Create Synchronized Project

ª  In the Project Explorer, right click then choose
ª  New>Synchronized C/C++ Project if your project is C/C++ only

ª  New>Synchronized Fortran Project if your project contains Fortran
files

ª  This adds a Fortran nature so you can access Fortran properties, etc.

Sync-13 Synchronized Projects

Or via menus:
File>New>Other…
And under Remote, choose
Synchronized C/C++
Project

B

Synchronized Projects Sync-14

ª  Enter the Project Name
ª  E.g. “shallow”

ª  The Local Directory specifies
where the local files are located
ª  Leave as default

ª  The Remote Directory specifies
where the remote files are located
ª  Select a connection to the remote

machine, or click on New… to create
a new one
 (See next slide)

ª  Use Modify File Filtering… if required
(see later slide)

New Synchronized Project Wizard
B
A

Creating a Connection

ª In the Target Environment Configuration
dialog
ª Enter a Target name

for the remote host
ª Enter host name, user name,

and user password or
other credentials

ª Select Finish

Sync-15 Synchronized Projects

If your machine access requires
ssh access through a frontend/
intermediate node, use
localhost and port – see
alternate instructions for
ssh tunnel

Remote Directory for Project
ª  After the connection has been specified,

Browse for the directory on the remote machine

ª  Select directory if it exists, or enter a new directory name
ª  Hit OK

Synchronized Projects Sync-16

Sync-17

ª  Choose the Project Type
ª  This tutorial’s code has its own makefile,

so use
Makefile Project>Empty Project

ª  Otherwise, choose the type of project
you want to create

ª  Choose the toolchain for the remote
build
ª  Use a toolchain that most closely

matches the remote system

ª  Choose a toolchain for the local
build
ª  This is optional if you don’t plan to build

on the local machine
ª  This is used for advanced editing/

searching

ª  Use Modify File Filtering… if
required (see later slide)

ª  Click Finish to create the project

Project Type & Toolchain

Synchronized Projects

ª  If prompted, switch to the C/C++
Perspective after creating the files

ª  You should now see the “shallow” project in your
workspace

ª  Project is
synchronized
with remote
host

Project successfully created

Sync-18

Expand the
project root
to see the
project’s
contents

Synchronized Projects

Synchronized Project

ª  Back in the Project
Explorer, decorator on
project icon indicates
synchronized project

ª  Double-+ icon

ª  C Project w/o Sync

ª  Synchronized Project

Sync-19 Synchronized Projects

Synchronized Project Menu
ª  Synchronized projects are indicated

with a “synchronized” icon
ª  Right click on project to access

Synchronize menu
ª  Sync Active Now will manually

synchronize the active configuration
ª  Set Active can be used to select the

active configuration
ª  Manage… is used to create new

configurations to synchronize to
different target systems

ª  Sync All Now will manually
synchronizes all configurations

Sync-20 Synchronized Projects

ª  Auto-Sync (Global) will enable or
disable automatic synchronization

ª  Auto-Sync Settings can be used to
select which configurations will be
synchronized

ª  Filter… is used to change the filter
settings for the project

Manage Configurations
ª  Used to manage synchronize

configurations
ª  Use Set Active to change the active

configuration (shown in bold in the
list of configurations)

ª  Use Add to add a new configuration in
order to synchronize to a different
target system

ª  Other configuration information, such
as the default build configuration, can
also be changed

Sync-21 Synchronized Projects

By default, there will be a configuration for the
target system (active) and a Local configuration.
The Local configuration can be used to build a
local copy of the project if desired.

Synchronize Filters

ª If not all files in the remote project should be
synchronized, a filter can be set up
ª For example, it may not be desirable to synchronize

binary files, or large data files
ª Filters can be created at the same time as the

project is created
ª Click on the Modify File Filtering… button in the

New Project wizard
ª Filters can be added later

ª Right click on the project and select
Synchronization>Filter…

Sync-22 Synchronized Projects

Synchronize Filter Dialog

ª  Files can be filtered individually
by selecting/unselecting them in
the File View at the top

ª  Include or exclude files based on
paths and expressions

ª  Suggestion: add filter for
‘shallow’ so the executable, built
on remote machine, doesn’t get
synced back

Sync-23 Synchronized Projects

Synchronized Project Properties
ª  Synchronized configurations

can also be managed through
the project properties

ª  Open the project properties
by right-clicking on the
project and selecting
Properties
ª  Select Synchronize

ª  This is the same as using the
Synchronize>Manage…
menu

Sync-24 Synchronized Projects

Forcing a Resync
ª  If Auto-sync is set, the project

should automatically resync with
remote system when things
change

ª  Sometimes you may need to
do it explicitly

ª  Right click on project and select
Synchronization>Sync Active
Now

ª  Status area in lower right shows
when Synchronization occurs

Sync-25 Synchronized Projects

Remote Terminal
ª  There is a remote terminal that can be used to provide a

shell from within Eclipse
ª  If not in your workbench:

ª  Select Window>Show View>Other…
ª  Choose Terminal from the Terminal folder

ª  In the Terminal view, click on the Connect button
ª  It will use the previously configured connection from the

dropdown, or create a new one

Sync-26 Synchronized Projects

ª  If you need to change remote connection
information (such as username or
password), use the Remote
Environments view

Changing Remote Connection Information

Sync-27

ª  Stop the remote
connection first

ª  Right-click and
select Edit ª  Note: Remote Host may be stopped

ª  Any remote interaction starts it
ª No need to restart it explicitly

Synchronized Projects

Converting a Local
C/C++/Fortran Project

 to a
Synchronized Project

The following slides are for reference.

Our project is already a Synchronized Project.

Sync-28 Synchronized Projects

Converting To Synchronized

If source files exist on the local machine and you wish to
convert it to a Synchronized Project on a remote
system…

ª  Select File>New>Other…
ª  Open the Remote folder
ª  Select Convert to

Synchronized Project
ª  Click Next>

Sync-29 Synchronized Projects

Convert Projects Wizard
ª  For Project to convert

ª  Choose your local project
ª  For Connection name: click on

New…
ª  Unless you already have a connection

ª  Enter information for:
ª  Target name
ª  Host name of remote system
ª  User ID
ª  Password

ª  Click Finish to close it
ª  The connection name will

appear in the Connection
list

Sync-30 Synchronized Projects

Convert Projects Wizard (2)
Back in the conversion wizard dialog,

we specify where the remote files
will be stored

ª  Enter a directory name in the
Remote Directory field:
select Browse…
ª  Sample: /u/ac/trainXX/shallow

Typing a new directory name creates it
ª  This should normally be an empty directory

– since local files will be copied there
ª  Project files will be copied under this

directory

ª  Click Finish
ª  The project should synchronize

automatically

Sync-31 Synchronized Projects

Exercise
1.  Create a synchronized project

ª  Your login information and source directory will be
provided by the tutorial instructor

2.  Observe that the project files are copied to your
workspace

3.  Open a file in an editor, add a comment, and
save the file

4.  Observe that the file is synchronized when you
save the file
ª  Watch lower-right status area; confirm on host system

Synchronized Projects Sync-32

Optional Exercise
1.  Modify Sync filters to not bring the *.o files and

your executable back from the remote host
ª  Rebuild and confirm the files don’t get copied

Synchronized Projects Sync-33

Eclipse CVS – “Team” Features
ª Objective

ª Learn how to use Eclipse source code repository
features on your project

ª Contents
ª How the files look in the Project Explorer
ª Handling changes
ª Comparing files (diffs)

ª This module assumes project was created in

previous module

CVS Source Code Repository CVS-0

“Team” Features

ª Eclipse supports integration with multiple
version control systems (VCS)
ª CVS, SVN, Git, and others
ª Collectively known as “Team” services

ª Many features are common across VCS
ª Compare/merge
ª History
ª Check-in/check-out

ª Some differences
ª Version numbers
ª Branching

CVS-1 CVS Source Code
Repository

Two meanings for ‘Synchronize’

ª PTP’s synchronize
ª Copy files in synchronized projects between local and

remote to mirror them

ª Team synchronize
ª Show differences between local project and source

code repository versions

Basic-2 CVS Source Code
Repository

CVS Features

ª Shows version numbers next to
each resource

ª Marks resources that have
changed
ª Can also change color (preference

option)
ª Context menu for Team

operations
ª Compare to latest, another

branch, or history
ª Synchronize* whole project (or

any selected resources)
CVS-3 CVS Source Code

Repository

* Team synchronize

How to tell that you’ve
changed something

ª Open “calc.c”
ª Add comment at line 40
ª Save file
ª File will be marked “>”

to indicate that it has
been modified

CVS-4 CVS Source Code
Repository

Comparing single file
with what’s in the repository

ª  Right-click on “calc.c” and
select Compare
With>Latest from HEAD
ª  Even if you didn’t create project

from CVS, you can try Compare
With>Local History…

ª  Compare editor will open
showing differences
between local (changed)
file and the original

ª  Buttons allow changes to
be merged from right to
left

ª  Can also navigate between
changes using buttons

CVS-5 CVS Source Code
Repository

Comparing your project
with what’s in the repository

ª  Right-click on project
name (or any subset)
and select
Team>Synchronize
with Repository

ª  Team Synchronizing
perspective will open

ª  List of changed files
appears

ª  Double-click on a file to
see the diff viewer

ª  Buttons allow changes to
be merged from right to
left

ª  Can also navigate between
changes using buttons

CVS-6 CVS Source Code
Repository

Revert To The Latest Version

To replace your project contents to the current
contents of the project in the src code repo,

ª Right-click on the “shallow” project
… and select Replace With>Latest from HEAD

ª Review the resources that will be replaced,
then click OK

CVS-7 CVS Source Code
Repository

Exercise
ª Check out the shallow project from CVS as a

synchronized project - as described in this
module

CVS Source Code Repository CVS-8

Optional Exercise
1.  Name every person who modified the Makefile
2.  Identify which parts of the Makefile changed

since revision 1.3

Hint: Right-click the Makefile and select Team > Show History.
Both of these can be done from the History view.

Editor Features
ª Objective

ª Learn about Eclipse editor features

ª Contents
ª Saving
ª Editor markers
ª Setting up include paths
ª Code analysis
ª Content assistance and templates

Editor Features Editor-0

Editors
ª  An editor for a resource (e.g. a file) opens when you

double-click on a resource
ª  The type of editor depends on the type of the resource

ª  .c files are opened with the
C/C++ editor by default

ª  You can use Open With to
use another editor

ª  In this case the default
editor is fine (double-click)

ª  Some editors do not just edit raw text
ª  When an editor opens on a resource, it stays open across

different perspectives
ª  An active editor contains menus and toolbars specific to that

editor

 Editor Features Editor-1

Saving File in Editor

ª When you change a file in the editor,
an asterisk on the editor’s title bar
indicates unsaved changes

ª Save the changes by using
Command/Ctrl-S or File>Save

ª Undo last change using Command/Ctrl Z

Editor Features Editor-2

Editor and Outline View
ª  Double-click on

source file
ª  Editor will open in

main view

ª  Outline view is
shown for file in
editor

ª  Console shows
results of build,
local runs, etc.

Editor Features Editor-3

Source Code Editors & Markers

ª  A source code editor is a
special type of editor for
manipulating source
code

ª  Language features are
highlighted

ª  Marker bars for showing
ª  Breakpoints
ª  Errors/warnings
ª  Task Tags, Bookmarks

ª  Location bar for
navigating to interesting
features in the entire file Icons:

Editor Features Editor-4

Include Paths (1)
ª  In order for editor and build features to work properly, Eclipse needs to know where

your include files are located
ª  The build environment on the remote host knows your include files etc., but we must

tell Eclipse so that indexing, search, completion, etc. will know where things are

Editor-5 Editor Features

ª  Open Project Properties
ª  Expand C/C++ General
ª  Select Preprocessor

Include Paths
ª  Click GNU C, then CDT

User Setting Entries,
then click Add…

ª  In upper right, select
File System Path in
pulldown

ª  Check Contains System
Headers

ª  A UNC-style path specifies
//<connection>/<path>

ª  Enter Path
//trestles/opt/openmpi/
gnu/ib/include

ª  Select OK

Include Paths (2)

ª After adding include directory, it should
appear in the list

ª  Add second value:

//trestles/usr/include

... the same way

You should have
two entries:

Editor-6 Editor Features

Include Paths (3)

ª Select OK
ª The C/C++ Indexer should run

ª Lower right status area indicates it

ª If not force it via Project Properties>Index>Rebuild

Editor-7 Editor Features

Code Analysis (Codan)
ª If you see bug icons in the editor marker bar, they

are likely suggestions from Codan
ª  If include files are set correctly, they should not appear.

ª Code checkers can flag possible errors, even if
code is technically correct

ª To turn them off, use Preferences
Window > Preferences or Mac: Eclipse > Preferences
 C/C++ > Code Analysis
and uncheck
all problems

ª  Select OK to
close
Preferences

ª If icons don’t disappear:
Right mouse on Project >
Run C/C++ Code Analysis
ª You can also enable/disable
this per project in Project
Properties Uncheck all Editor Features Editor-8

Line Numbers

ª  Text editors can show line numbers in the
left column

ª  To turn on line
numbering:
ª  Right-mouse click in

the editor marker bar
(at editor left edge)

ª  Click on Show Line
Numbers

Editor Features Editor-9

ª  On demand hyperlink
ª  In main.c line 135:
ª  Hold down Command/Ctrl key

e.g. on call to initialise
ª  Click on initialise to navigate

to its definition in the header file
(Exact key combination
depends on your OS)

ª  E.g. Command/Ctrl and click on
initialise

ª  Open declaration
ª  Right-click and select Open

Declaration will also open the
file in which the element is
declared

ª  E.g. in main.c line 29 right-click
on decs.h and select Open
Declaration

Navigating to Other Files

Note: may need to left-click
before right-click works Editor Features Editor-10

ª  Note: remote includes must be set up
correctly for this to work

ª  On demand hyperlink
ª  In main.c line 73:
ª  Ctrl-click on fprintf
ª  stdio.h on remote system opens

ª  Open declaration (or F3)
ª  In main.c, right-click and select

Open Declaration e.g on <stdio.h>
ª  File from remote system is opened.

ª  Hover over editor name tab to see remote
location.

Navigating to Remote Files

Editor Features Editor-11

Content Assist & Templates
ª  Type an incomplete function name e.g. “get” into the editor,

and hit ctrl-space
ª  Select desired completion value with cursor or mouse

Hit ctrl-space again
for code templates ª  Code Templates: type

‘for’ and Ctrl-space

More info on code templates later
Editor Features Editor-12

Hover Help

ª Hover the mouse over a program element in
the source file to see additional information

Editor-13 Editor Features

Inactive code

ª Inactive code will appear grayed out in the
CDT editor

Editor-14 Editor Features

Exercise
1.  Open an editor by double clicking on a source file in the

Project Explorer
2.  Use the Outline View to navigate to a different line in

the editor
3.  Back in main.c, turn on line numbering
4.  In main.c, ctrl-click on line 99, master_packet, should

navigate to its definition in the file
5.  In worker.c, line 132, hover over variable p to see info

Editor Features Editor-15

Optional Exercise
1.  Type “for”, then activate content assist

ª  Select the for loop with temporary variable template, insert it,
then modify the template variable

ª  Surround the code you just inserted with “#if 0” and “#endif” and
observe that it is marked as inactive

ª  Save the file
2.  What do these keys do in the editor?

ª  Ctrl+L; Ctrl+Shift+P (do it near some brackets)
ª  Ctrl+Shift+/;
ª  Ctrl+Shift+Y and Ctrl+Shift+X (do it on a word or variable name

e.g.)
ª  Alt+Down; Alt+Up

3.  To make sure you didn’t do any damage,
ª  Select any source files you changed and do rightmouse > replace with ..

ª  (if you made project from CVS) ….Latest from HEAD
ª  (If you made project from remote files) … Local History ….

ª  Observe that your changes are gone.

Editor Features Editor-16

MPI Programming
ª Objective

ª Learn about MPI features for your source files

ª Contents
ª Using Editor features for MPI
ª MPI Help features
ª Finding MPI Artifacts
ª MPI New Project Wizards
ª MPI Barrier Analysis

MPI Programming MPI-0

MPI-Specific Features

ª  PTP’s Parallel Language Development Tools (PLDT) has
several features specifically for developing MPI code
ª Show MPI Artifacts
ª Code completion / Content Assist
ª Context Sensitive Help for MPI
ª Hover Help
ª MPI Templates in the editor
ª MPI Barrier Analysis

ª PLDT has similar features for OpenMP, UPC,

OpenSHMEM, OpenACC

MPI-1 MPI Programming

ª In Project Explorer, select a project, folder, or a
single source file
ª  The analysis will be run on the selected resource(s)

MPI-2

Show MPI Artifacts

-2

ª  Run the analysis by
clicking on drop-
down menu next to
the analysis button

ª  Select Show MPI
Artifacts

MPI Programming

-3

MPI Artifact View
ª  Markers indicate the

location of artifacts in
editor

ª  The MPI Artifact View
lists the type and location
of each artifact

ª  Navigate to source code
line by double-clicking on
the artifact

ª  Run the analysis on
another file (or entire
project!) and its markers
will be added to the view

ª  Click on column headings
to sort

ª  Remove markers via

MPI-3 MPI Programming

MPI-4

MPI Editor Features
ª  Code completion will show all

the possible MPI keyword
completions

ª  Enter the start of a keyword
then press <ctrl-space>

-4

ª  Hover over MPI API
ª  Displays the function

prototype and a
description

MPI Programming

MPI-5

Context Sensitive Help
ª  Click mouse, then press help

key when the cursor is within a
function name
ª  Windows: F1 key
ª  Linux: ctrl-F1 key
ª  MacOS X: Help key or

Help�Dynamic Help
ª  A help view appears (Related

Topics) which shows
additional information
(You may need to click on MPI
API in editor again, to
populate)

ª  Click on the function name to
see more information

ª  Move the help view within your
Eclipse workbench, if you like,
by dragging its title tab

-5

Some special
info has been
added for MPI
APIs

MPI Programming

MPI-6

MPI Templates

ª Example:
 MPI send-receive

ª Enter:
 mpisr <ctrl-space>

ª Expands to a send-receive
pattern

ª Highlighted variable names
can all be changed at once

ª Type mpi <ctrl-space> <ctrl-
space> to see all templates

Add more templates using Eclipse preferences!
C/C++>Editor>Templates
Extend to other common patterns

-6

ª Allows quick entry of common patterns in MPI programming

MPI Programming

MPI Barrier Analysis
ª  Verify barrier

synchronization in C/MPI
programs

ª  For verified programs, lists
barrier statements that
synchronize together
(match)

ª  For synchronization errors,
reports counter example
that illustrates and
explains the error

MPI-7

Local files only

MPI Programming

MPI Barrier Analysis (2)

MPI-8

Run the Analysis:
ª In the Project

Explorer, select the
project (or directory,
or file) to analyze

ª Select the MPI
Barrier Analysis
action in the pull-
down menu

MPI Programming

MPI Barrier Analysis (3)

ª No Barrier Errors are found (no pop-up
indicating error)

ª Two barriers are found

MPI-9 MPI Programming

MPI Barrier Analysis Views

MPI Barriers view

Simply lists the barriers

Like MPI Artifacts view,
double-click to navigate
to source code line (all
3 views)

Barrier Matches view
Groups barriers that
match together in a
barrier set – all
processes must go
through a barrier in the
set to prevent a
deadlock

Barrier Errors view

If there are errors, a
counter-example
shows paths with
mismatched number
of barriers

MPI-10 MPI Programming

Barrier Errors

ª Let’s cause a barrier mismatch error
ª Open worker.c in the editor by double-clicking

on it in Project Explorer
ª At about line 125,

enter a barrier:
ª Type MPI_B
ª Hit Ctl-space
ª Select MPI_Barrier
ª Add communicator

arg MPI_COMM_WORLD and closing semicolon

MPI-11 MPI Programming

Barrier Errors (2)

ª Save the file
ª Ctl-S (Mac Command-S) or File > Save
ª Tab should lose asterisk indicating file saved

ª Run barrier analysis on shallow project again
ª Select shallow

project in Project
Explorer first

MPI-12 MPI Programming

Barrier Errors (3)

ª Barrier Error is found
ª Hit OK to dismiss dialog

ª Code diverges on line 87

ª One path has 2 barriers, other has 1

MPI-13

Double-click
on a row in
Barrier Errors
view to find
the line it
references in
the code

MPI Programming

Fix Barrier Error

ª Fix the Barrier Error
before continuing

ª Double-click on the
barrier in worker.c
to quickly navigate
to it

ª Remove the line and save the file
ª Re-run the barrier analysis to check that it has

been fixed

MPI-14 MPI Programming

Remove Barrier Markers

ª Run Barrier Analysis again to remove the error
ª Remove the Barrier Markers via the “X” in one

of the MPI Barrier views

MPI-15 MPI Programming

MPI New Project Wizards

ª Quick way to make a simple MPI project
ª File > New > C Project

ª “MPI Hello World”

is good for trying out
Eclipse for MPI

MPI-16 MPI Programming

MPI New Project Wizards (2)

ª Next> and fill in (optional) Basic Settings

MPI-17

ª Next> and fill in MPI Project
 Settings
ª Include path set in MPI
Preferences can be added to
project

MPI Programming

MPI New Project Wizards (3)

ª Select Finish and “MPI Hello World” project
is created

MPI-18 MPI Programming

MPI Preferences

ª Settings for MPI New Project wizards
ª MPI Include paths, if set in MPI

Preferences, are added in MPI New
Project Wizard

MPI-19 MPI Programming

Exercise

1.  Find MPI artifacts in ‘shallow’ project
ª  Locate all the MPI communication (send/receive)

calls
2.  Use content assist to add an api call

ª  E.g., Type MPI_S, hit ctl-space
3.  Use hover help
4.  Use a template to add an MPI code template

ª  On a new line, type mpisr and ctl-space…

MPI-20 MPI Programming

Optional Exercise

1.  Insert an MPI_Barrier function call into one of
your source files using content assist
ª  E.g. Line 125 of worker.c

2.  Save the file
3.  Run Barrier Analysis on the project
4.  Locate the source of the barrier error and

remove the statement
5.  Re-run barrier analysis to observe that the

problem has been fixed

MPI-21 MPI Programming

Configuring SSH Tunnel

Tunnel-0 SSH Tunnel

Configure the
Synchronized Project -

SSH tunnel (1)

SSH Tunnel Tunnel-1

ª  If your machine access requires ssh access through a frontend/
intermediate node, set up an ssh tunnel before configuring the
project - from command line or e.g. Windows PuTTY, e.g.
ssh -L <port>:<target-host> <userid>@<frontend-host>
(For details see http://wiki.eclipse.org/PTP/FAQ)

ª  When you configure the connection for the project

ª  Connection: New…

ª  The connection will use
the port for the ssh tunnel
(details on next slide)

Configure connection to
remote host – SSH Tunnel (2)

SSH Tunnel Tunnel-2

ª  In Target Environment Configuration
dialog, enter target name,
and host information
ª  1. Specify Target name
ª  2. If using a tunnel, select

Localhost and enter userid and
password for remote system
ª  For direct access, just

select Remote Host, enter
hostname, userid, password

ª  3. select the Advanced button
to specify the port

ª  Select Finish

2.

Specify port for tunnel

1.

3.

Building a Project

ª Objective
ª Learn how to build an MPI program on a remote

system
ª Contents

ª How to change build settings
ª How to start a build and view build output
ª How to clean and rebuild a project
ª How to do environment configuration with modules
ª How to create build targets

Build-0 Building a Project

Build Configurations
ª  A build configuration provides the

necessary information to build the
project

ª  The build configuration
information is specified in the
project properties

ª  Projects can have multiple build
configurations, each configuration
specifies a different set of options
for a build

ª  Open the properties by right-
clicking on the project name in the
Project Explorer view and
selecting Properties (bottom of
the context menu list)

Build-1 Building a Project

Note: Fortran projects are a superset of
C/C++ projects, so they have properties
for both

Build Properties (1)

Build-2 Building a Project

ª  C/C++ Build
ª  Main properties page
ª  Configure the build command
ª  Default is “make” but this can be changed to

anything
ª  Build Variables

ª  Create/manage variables that can be used in other
build configuration pages

ª  Environment
ª  Modify/add environment variables passed to build

ª  Logging
ª  Enable/disable build logging

Build Properties (2)

Build-3 Building a Project

ª  Settings
ª  Binary parser selection (used to display binaries in

Project Explorer)
ª  Error parser selection (used to parse the output from

compiler commands)
ª  Tool Chain settings (managed projects only)

ª  Tool Chain Editor
ª  Allows the tools in a particular tool chain to be

modified
ª  XL C/C++ Compiler

ª  Compiler settings for XL C/C++ compilers (if installed)

ª  C/C++ General/Preprocessor Include Paths…
ª  Set include paths here

Selecting Build Configuration

ª  Multiple build configurations may be available
ª  Synchronized projects will usually have a remote and a local build configuration
ª  Build configurations for different architectures

ª  The active build configuration will be used when the build button
is selected

ª  The Build Configurations project context menu can be used to
change the active configuration
ª  Right click on project, then select the build configuration from the Build

Configurations > Set Active menu

Build-4 Building a Project

Building Synchronized Projects
ª  When the build button is selected, the

“active” build configuration will be built
on the remote system specified by the
“active” synchronize configuration

ª  The build and synchronize configurations
are independent
ª  It is possible to change which build

configuration is active, but make sure this
makes sense on the remote system specified in
the synchronize configuration

ª  Right mouse on Project,
Synchronize > Manage…

ª  A build configuration can be associated
with a synchronize configuration, so that
it is automatically selected when the
synchronize configuration is changed

Build-5 Build

Configuring the Build Environment
ª  If the remote system has an

environment system (such as
Modules) installed, a custom
set of modules can be
configured for building C/C++
projects

ª  In the Manage Synchronize
Configurations dialog, select
the configuration you wish to
change

ª  Check Use an environment
management system to
customize the remote build
environment

Build-6 Building a Project

Build Environment (2)
ª  Select a module from the

Available Modules list and
click the Add-> button to add
them to the Selected
Modules list

ª  Use the <-Remove button to
remove modules from the
Selected Modules list

ª  Use the Filter list field to
quickly find modules with a
given name

ª  Use the Up and Down
buttons to change the order of
the Selected Modules

ª  Click Select Defaults to load
only those modules that are
present in a new login shell

Build-7 Building a Project

We’ll do this for tutorial in a few slides…

Build Environment (3)

ª  When you build the project, Eclipse will
ª  Open a new Bash login shell
ª  Execute module purge
ª  Execute module load for each selected module
ª  Run make

ª  Module commands are displayed in the Console view during build
ª  Beware of modules that must be loaded in a particular order, or

that contain common paths like /bin or /usr/bin

Build-8 Building a Project

Build Environment (4)
ª  For this tutorial, we

want to use gcc and
Open MPI

ª  To get to this dialog: Right
mouse on Project,
Synchronize > Manage…

ª  Navigate to gnu in
Available Modules
and select Add ->

ª  Navigate to
openmpi_ib and
select Add ->

ª  Assure the
order matches this
ª  If not, use Up/Down

buttons

Build-9 Building a Project

Start with original‘shallow’

ª Start with original ‘shallow’ code:
ª Project checked out from CVS:

ª Right mouse on project,
Replace with > Latest from HEAD

Also see Compare With …

ª Other project:
ª Right mouse on project,

Restore from local history – finds deleted files
ª Right mouse on file, Compare With

or Replace With

Build-10 Building a Project

Changed file:

Starting the Build
ª  Select the project in Project Explorer

ª  Click on the hammer button in toolbar to run a build
using the active build configuration

ª  By default, the Build Configuration assumes there is a
Makefile (or makefile) for the project

Build-11 Building a Project

ª  Build output will be visible in console

Viewing the Build Output

Build-12 Building a Project

Build Problems

ª  Build problems will be
shown in a variety of
ways
ª  Marker on file
ª  Marker on editor line
ª  Line is highlighted
ª  Marker on overview ruler
ª  Listed in the Problems

view

ª  Double-click on line in
Problems view to go
to location of error in
the editor

 Building a Project Build-13

Forcing a Rebuild
ª  If no changes have been made,

make doesn’t think a build is needed
e.g. if you only change the Makefile

ª  In Project Explorer, right click on
project; Select Clean Project

ª  Build console will display results

ª  Rebuild project by clicking on
build button again

Building a Project Build-14

Forcing a Resync
ª  Project should resync with remote

system when things change
ª  Sometimes you may need to

do it explicitly
ª  Right mouse on project,

Synchronize>Sync Active Now

ª  Status area in lower right shows
when Synchronization occurs

Building a Project Build-15

ª  By default
ª  The build button will run “make all”
ª  Cleaning a project will run “make clean”

ª  Sometimes, other build targets are
required

ª  Open Make Target view
ª  Select project and click on New

Make Target button
ª  Enter new target name
ª  Modify build command if desired
ª  New target will appear in view
ª  Double click on target to activate

Creating Make Targets

Build-16 Building a Project

Build-17

Exercise

1.  Start with your ‘shallow’ project
2.  Build the project
3.  Edit a source file and introduce a compile error

ª  In main.c, line 97, change ‘;’ to ‘:’
ª  Save, rebuild, and watch the Console view
ª  Use the Problems view to locate the error
ª  Locate the error in the source code by double

clicking on the error in the Problems view
ª  Fix the error

4.  Rebuild the project and verify there are no build errors

Building a Project

Build-18

Optional Exercise

1.  Open the Makefile in Eclipse. Note the line starting with
“tags:” – this defines a make target named tags.

2.  Open the Outline view while the Makefile is open. What icon
is used to denote make targets in the Outline?

3.  Right-click the tags entry in the Outline view. Add a Make
Target for tags.

4.  Open the Make Target view, and build the tags target.

5.  Rename Makefile to Makefile.mk
6.  Attempt to build the project; it will fail
7.  In the project properties (under the C/C++ Build category),

change the build command to: make –f Makefile.mk
8.  Build the project; it should succeed

Building a Project

Running an Application
ª Objective

ª Learn how to run an MPI program on a remote system

ª Contents
ª Creating a run configuration
ª Configuring the application run
ª Monitoring the system and jobs
ª Controlling jobs
ª Obtaining job output

Running an Application Run-1

Run-2

ª  Open the run configuration
dialog Run>Run
Configurations…

ª  Select Parallel Application
ª  Select the New button

Or, just double-click on
Parallel Application
to create a new one

Creating a Run Configuration

Note: We use “Launch Configuration” as a generic term to refer to either a
“Run Configuration” or a “Debug Configuration”, which is used for debugging.

Running an Application

Run-3

Set Run Configuration Name
ª  Enter a name for this run configuration

ª  E.g. “shallow”

ª  This allows you to easily re-run the
same application

ª  If the “shallow” project was selected
when the dialog was opened, its name
will be automatically entered

-3 Running an Application

Run-4

Configuring the Target System
ª  In Resources tab, select a

Target System Configuration
that corresponds to your target
system
ª  Use edu.sdsc.trestles.torque.batch

ª  Target system configurations can
be generic or can be specific to a
particular system

ª  Use the specific configuration if
available, or the generic
configuration that most closely
matches your system

ª  You can type text in the box to
filter the configurations in the
list

-4 Running an Application

Run-5

Configure the Connection
ª  Choose a connection to

use to communicate with
the target system

ª  If no connection has been
configured, click on the
New button to create a
new one
ª  Fill in connection information,

then click ok

ª  The new connection
should appear in the
dropdown list

ª  Select the connection you
already have to
trestles.sdsc.edu

ª  Select toggle if you don’t
want to see popup again

-5 Running an Application

Run-6

Resources Tab
ª  The content of the

Resources tab will vary
depending on the target
system configuration
selected

ª  This example shows the
TORQUE configuration

ª  For TORQUE, you will
normally need to select
the Queue and the
Number of nodes

ª  For parallel jobs, choose
the MPI Command and
the MPI Number of
Processes

See next slide

-6 Running an Application

Run-7

Resources Tab (2)
ª  For this tutorial, use the following values

ª  Queue: shared
ª  Number of nodes: 1:ppn=5
ª  MPI Command: mpirun
ª  MPI Number of Processes: 5
ª  Leave other fields alone

ª  Configure modules for running the application
ª  Click on the Modules to Load: Configure… button
ª  Select the same modules used to build

ª  gnu
ª  openmpi_ib

-7 Running an Application

Run-8

Viewing the Job Script
ª  Some target

configurations will
provide a View Script
button

ª  Click on this to view the
job script that will be
submitted to the job
scheduler

ª  Batch scheduler
configurations should
also provide a means of
importing a batch script

-8 Running an Application

Run-9

Application Tab

ª  Select the Application tab
ª  Choose the Application

program by clicking the
Browse button and locating
the executable on the remote
machine
ª  Use the same “shallow”

executable
ª  Select Display output from

all processes in a console
view

-9 Running an Application

Run-10

Arguments Tab (Optional)
ª  The Arguments tab lets

you supply command-line
arguments to the
application

ª  You can also change the
default working directory
when the application
executes

-10 Running an Application

Run-11

Environment Tab (Optional)
ª  The Environment tab

lets you set environment
variables that are passed
to the job submission
command

ª  This is independent of the
Environment Management
(module/softenv) support
described on previous
slide

-11 Running an Application

Run-12

Synchronize Tab (Optional)
ª  The Synchronize tab lets

you specify upload/
download rules that are
execute prior to, and after
the job execution

ª  Click on the New
upload/download rule
buttons to define rules

ª  The rule defines which file
will be uploaded/
downloaded and where it
will be put

ª  Can be used in
conjunction with program
arguments to supply input
data to the application

-12 Running an Application

Run-13

Common Tab (Optional)
ª  The Common tab is

available for most launch
configuration types (not
just Parallel Application)

ª  Allows the launch
configuration to be
exported to an external
file

ª  Can add the launch
configuration to the
favorites menu, which is
available on the main
Eclipse toolbar

ª  Select Run to launch
the job

-13 Running an Application

Run

ª Select Run to launch the job
ª You may be asked to switch to the System

Monitoring Perspective

ª Select Remember my decision so you
won’t be asked again

ª Select Yes to switch and launch the job

 Run-14 Building and Running

System Monitoring Perspective
ª  System view

ª  Jobs running

on system

ª  Active jobs

ª  Inactive jobs

ª  Messages

ª  Console

Run-15 Running an Application
Scroll to see more

Moving views

ª The System Monitoring Perspective overlaps
the Active Jobs and Inactive Jobs views

ª To split them apart and see both at once,
drag the tab for the Inactive Jobs view to
the lower half of its area, and let go of mouse

Run-16 Building and Running

Run-17

System Monitoring

ª  System view, with
abstraction of system
configuration

ª  Hold mouse button
down on a job in
Active Jobs view to
see where it is
running in System
view

ª  Hover over node in

System view to see
job running on node
in Active Jobs view

-17

One node with
16 cores

Running an Application

Run-18

ª  Job initially appears in

Inactive Jobs view
ª  Moves to the Active Jobs

view when execution begings
ª  Returns to Inactive Jobs

view on completion
ª  Status refreshes

automatically every 60 sec
ª  Can force refresh with menu

-18 Running an Application

Job Monitoring

Run-19

ª  Right click on a job to open
context menu

ª  Actions will be enabled IFF
ª  The job belongs to you
ª  The action is available on the

target system
ª  The job is in the correct state for

the action

ª  When job has COMPLETED, it
will remain in the Inactive
Jobs view

-19 Running an Application

Controlling Jobs

Run-20

ª  After status changes to

COMPLETED, the output is
available
ª  Right-click on the job
ª  Select Get Job Output to display

output sent to standard output
ª  Select Get Job Error to retrieve

output sent to standard error

ª  Output/Error info shows in
Console View

ª  Jobs can be removed by
selecting Remove Job Entry

-20 Running an Application

Obtaining Job Output

Add a Monitor

ª You can monitor other systems too
ª In Monitors view, select the ‘+’ button to

add a monitor

ª Choose monitor type and connection;
create a new connection if necessary

Run-21 Running an Application

Double click
new monitor
to start

Run-22

Exercise

1.  Start with your ‘shallow’ project
2.  Create a run configuration
3.  Complete the Resources tab
4.  Select the executable in the Application tab
5.  Submit the job
6.  Check the job is visible in the Inactive Jobs view,

moves to the Active Jobs view when it starts running
(although it may be too quick to show up there), then
moves back to the Inactive Jobs view when completed

7.  View the job output
8.  Remove the job from the Inactive Jobs view

Running an Application

Fortran
ª Objectives

ª Learn how to create and convert Fortran projects
ª Learn to use Fortran-specific editing features
ª Learn about Fortran-specific properties/preferences

ª Contents
ª Fortran projects
ª Using the Fortran editor
ª Fortran project properties and workbench preferences

ª Prerequisites
ª Basics (for exercises)

Fortran Projects Fortran-0

Ralph Johnson’s research group at UIUC used to meet at Pho-Tran…

…which became the name of their Fortran IDE.

Configuring Fortran Projects

Fortran Projects Fortran-3

Project Properties

ª  Right-click Project
ª  Select Properties…

ª Project properties are settings
that can be changed for each
project

ª  Contrast with
workspace preferences,
which are the same
regardless of what
project is being edited
ª  e.g., editor colors
ª  Set in Window�

Preferences
(on Mac, Eclipse�
Preferences)

ª  Careful! Dialog is
very similar

Fortran Projects Fortran-4

Converting to a Fortran Project

ª Are there categories labeled Fortran General
and Fortran Build in the project properties?

No Fortran categories

ª If not, the project is not a Fortran Project
ª Switch to the Fortran Perspective
ª In the Fortran Projects view, right-click on the

project, and click Convert to Fortran Project
ª Don’t worry; it’s still a C/C++ project, too

ª Every Fortran project is also a C/C++ Project

Do this
once

Fortran Projects Fortran-5

Project Location

ª  How to tell where a project
resides?

ª  In the project properties
dialog, select the
Resource category

Fortran Projects Fortran-6

Error Parsers

ª Are compiler errors not appearing in the
Problems view?
ª Make sure the correct error parser is enabled
ª In the project properties, navigate to

C++ Build�Settings or Fortran Build�Settings
ª Switch to the Error Parsers tab
ª Check the error parser(s) for your compiler(s)

Do this
once

Fortran Projects Fortran-7

Fortran Source Form Settings
ª Fortran files are either free form or fixed form;

some Fortran files are preprocessed (#define, #ifdef, etc.)

ª  Source form determined by filename extension
ª  Defaults are similar to most Fortran compilers:

 Fixed form: .f .fix .for .fpp .ftn .f77

 Free form: .f08 .f03 .f95 .f90 < unpreprocessed
 .F08 .F03 .F95 .F90 < preprocessed

ª Many features will not work if filename extensions
are associated with the wrong source form
(outline view, content assist, search, refactorings, etc.)

Fortran Projects Fortran-8

Fortran Source Form Settings

ª  In the project
properties, select
Fortran General�
Source Form

ª  Select source form
for each filename
extension

ª  Click OK

Do this
once

Fortran Projects Fortran-9

Enabling Fortran Advanced Features

ª Some Fortran features are disabled by default
ª Must be explicitly enabled

ª In the project properties dialog,
select Fortran General � Analysis/Refactoring

ª Click Enable
Analysis/
Refactoring

ª Close and re-open
any Fortran editors

ª This turns on the
“Photran Indexer”
ª Turn it off if it’s slow

Do this
once

Fortran Projects Fortran-10

Exercise

1.  Convert shallow to a Fortran project

2.  Make sure errors from the GNU Fortran
compiler will be recognized

3.  Make sure *.f90 files are treated as
“Free Form” which is unpreprocessed

4.  Make sure search and refactoring will work in
Fortran

Fortran Projects Fortran-11

Advanced Editing

Code Templates

Fortran Projects Fortran-12

Code Templates
(C/C++ and Fortran)

ª Auto-complete common code patterns
ª For loops/do loops, if constructs, etc.
ª Also MPI code templates

ª Included with content assist proposals

(when Ctrl-Space is pressed)
ª E.g., after the last line in tstep.f90, type “sub” and

press Ctrl-Space
ª Press Enter to insert the template

Fortran Projects Fortran-13

Code Templates (2)
(C/C++ and Fortran)

ª After pressing enter to insert the code
template, completion fields are highlighted

ª Press Tab to move between completion fields
ª Changing one instance of a field changes all

occurrences

Fortran Projects Fortran-14

Exercise

ª  Open tstep.f90 and retype the last loop nest
ª  Use the code template to complete the do-loops

ª  Use content assist to complete variable names

Fortran Projects Fortran-15

Custom Code Templates
(Fortran)

ª Customize code templates in Window �
Preferences � Fortran � Templates

ª Can import/export templates to XML files
Fortran Projects Fortran-16

Search & Refactoring
ª Objectives

ª Develop proficiency using Eclipse’s textual and
language-based search and navigation capabilities

ª Introduce common automated refactorings

ª Contents
ª Searching
ª Refactoring and Transformation

ª Prerequisites
ª Basics
ª Fortran

Advanced Features Advanced-0

Find/Replace within Editor

ª Simple Find within editor buffer
ª Ctrl-F (Mac: Command-F)

Advanced-1 Advanced Features

Mark Occurrences
(C/C++ Only)

ª Double-click on a variable in the CDT editor
ª All occurrences in the source file are

highlighted to make locating the variable
easier

ª Alt-shift-O to turn off (Mac: Alt-Cmd-O)

Advanced-2 Advanced Features

Language-Based Searching
(C/C++ and Fortran)

Advanced-3 Advanced Features

ª  “Knows” what things can
be declared in each
language (functions,
variables, classes,
modules, etc.)

ª  E.g., search for every call
to a function whose name
starts with “get”

ª  Search can be project- or
workspace-wide

Find References
(C/C++ and Fortran)

ª Finds all of the places where a variable,
function, etc., is used
ª Right-click on an identifier in the editor
ª Click References�Workspace

or References�Project

ª Search view
shows matches

Advanced-4 Advanced Features

Open Declaration
(C/C++ and Fortran)

ª  Jumps to the declaration of
a variable, function, etc.,
even if it’s in a different
file

ª  Left-click to select identifier
ª  Right-click on identifier
ª  Click Open Declaration

ª  C/C++ only:

Can also Ctrl-click
(Mac: Cmd-click) on an
identifier to “hyperlink” to
its declaration

Advanced-5 Advanced Features

Goes to its declaration
in copy.c

Search – Try It!

1.  Find every call to MPI_Recv in Shallow.

2.  In worker.c, on line 42, there is a declaration
float p[n][m].
a)  What is m (local? global? function parameter?)

b)  Where is m defined?

c)  How many times is m used in the project?

3.  Find every C function in Shallow whose name
contains the word time

Advanced-6 Advanced Features

Refactoring and Transformation

Advanced-7 Advanced Features

Refactoring

ª  39 automated refactorings in Photran

(making changes to source code that don’t affect the behavior of the program)

Advanced-8 Advanced Features

Refactoring Caveats

ª Photran can only refactor free form code that
is not preprocessed
ª Determined by Source Form settings

(recall from earlier that these are configured in
Project Properties: Fortran General�Source Form)

Advanced-9 Advanced Features

ª Refactor menu will be empty if
ª  Refactoring not enabled in project properties

(recall from earlier that it is enabled in
Project Properties: Fortran General�Analysis/Refactoring)

ª  The file in the active editor is fixed form
ª  The file in the active editor is preprocessed

✔ Free Form, Unpreprocessed: .f08 .f03 .f95 .f90

✖ Free Form, Preprocessed: .F08 .F03 .F95 .F90

✖ Fixed Form: .f .fix .for .fpp .ftn .f77

Rename Refactoring
(also available in Fortran)

ª Changes the name of a variable, function, etc.,
including every use
(change is semantic, not textual, and can be workspace-wide)

ª Only proceeds if the new name will be legal
(aware of scoping rules, namespaces, etc.)

ª Switch to C/C++ Perspective
ª Open a source file
ª In the editor, click on a

variable or function name
ª Select menu item

Refactor�Rename
ª Or use context menu

ª Enter new name
Advanced-10 Advanced Features

In Java (Murphy-Hill et al., ICSE 2008):

Rename in File
(C/C++ Only)

Advanced-11 Advanced Features

ª  Position the caret
over an identifier.

ª  Press Ctrl-1
(Command-1 on Mac).

ª  Enter a new name.
Changes are
propagated within
the file as you type.

ª  Moves statements into a new function, replacing the
statements with a call to that function

ª  Local variables are passed as arguments

Extract Function Refactoring

ª  Select a sequence of
statements

ª  Select menu item
Refactor�
Extract Function…

ª  Enter new name

(also available in Fortran - “Extract Procedure”)

Advanced-12 Advanced Features

ª  Fortran does not require variable declarations
(by default, names starting with I-N are integer variables; others are reals)

ª  This adds an IMPLICIT NONE statement and adds explicit
variable declarations for all implicitly declared variables

Introduce IMPLICIT NONE Refactoring

ª  Introduce in a single file by
opening the file and selecting
Refactor�Coding Style�
Introduce IMPLICIT NONE…

ª  Introduce in multiple files by
selecting them in the Fortran
Projects view, right-clicking on
the selection, and choosing
Refactor�Coding
Style�Introduce IMPLICIT
NONE…

Advanced-13 Advanced Features

ª  Interchange Loops CAUTION: No check for behavior preservation

ª  Swaps the loop headers in a two-loop nest
ª  Select the loop nest, click menu item Refactor�Do Loop�

Interchange Loops (Unchecked)…

Loop Transformations
(Fortran only)

Advanced-14 Advanced Features

Old version traverses
matrices in row-major order

New version traverses
in column-major order
(better cache performance)

Loop Transformations
(Fortran only)

Advanced-15 Advanced Features

ª  Unroll Loop
ª  Select a loop, click Refactor�Do Loop�Unroll Loop…

do i = 1, 10
 print *, 10*i
end do

do i = 1, 10, 4
 print *, 10*i
 print *, 10*(i+1)
 print *, 10*(i+2)
 print *, 10*(i+3)
end do

Unroll 4×

Refactoring & Transformation –
Exercises

In tstep.f90…

1.  In init.c, extract the printf statements at
the bottom of the file into a new function
called print_banner

2.  In worker.c, change the spellings of
neighbour_send and neighbour_receive
to American English

3.  In tstep.f90, make the (Fortran) tstep
subroutine IMPLICIT NONE

Advanced-16 Advanced Features

NCSA/XSEDE Features
ª Objectives

ª Install NCSA’s GSI auth and XSEDE support plug-ins
ª Become familiar with the System menu

ª Contents
ª Capabilities
ª Installation

ª Prerequisites
ª (none)

Advanced Features: NCSA/XSEDE NCSA-0

Additional Plug-ins from NCSA

ª NCSA publishes additional plug-ins can be
added onto an existing PTP installation

ª Contribute a System menu to the menu bar
with XSEDE- and NCSA-specific commands

NCSA-1 Advanced Features: NCSA/XSEDE

System Menu

ª  Open Web content in Eclipse:

ª  Open XSEDE User Portal

ª  Open User Guide for a machine

ª  Open an SSH terminal
(as an Eclipse view)

NCSA-2 Advanced Features: NCSA/XSEDE

Eclipse-integrated SSH terminals are provided
by the Remote System Explorer (RSE), one of
the features that is included in the Eclipse for
Parallel Application Developers package.

System Menu

ª  Shortcuts for common PTP tasks:

ª  Add Remote Environment adds a

Remote Tools connection for a
particular machine

ª  Add System Monitor opens the
System Monitoring perspective and
begins monitoring a particular
machine

NCSA-3 Advanced Features: NCSA/XSEDE

System Menu

ª  The plug-in is preconfigured with
information about XSEDE and
NCSA resources

ª  The bottom four commands
generally prompt for a system

ª  Select System can be used to
eliminate this prompt, so these
commands always act on a
particular system

NCSA-4 Advanced Features: NCSA/XSEDE

MyProxy Logon

ª  MyProxy Logon allows you
to authenticate with a
MyProxy server
ª  Often myproxy.teragrid.org

ª  It stores a “credential,” which
is usually valid for 12 hours

ª  During these 12 hours, SSH
connections to XSEDE
resources will not require a
password; they can use the
stored credential
ª  However, you must enter the

correct username for that
machine!

NCSA-5 Advanced Features: NCSA/XSEDE

Installation

1.  Click Help > Install New Software
2.  Click Add to open the Add Repository dialog
3.  In the Location field, enter

 http://forecaster.ncsa.uiuc.edu/updates/kepler

and then click OK to close the Add dialog.
§  Or, if you copied ncsa-update-size.zip from a USB

drive, click Archive, select that file, and click OK.
4.  Select the following:

ª GSI Authentication and MyProxy Logon Support
ª NCSA and XSEDE System Support

5.  Click Next and complete the installation

NCSA-6 Advanced Features: NCSA/XSEDE

Parallel Debugging

Parallel Debugging

ª Objective
ª Learn the basics of debugging parallel programs

ª Contents
ª Launching a debug session
ª The Parallel Debug Perspective
ª Controlling sets of processes
ª Controlling individual processes
ª Parallel Breakpoints
ª Terminating processes

Debug-0

Debugging Setup

ª  Debugging requires interactive access to the application
ª  Can use any of the -Interactive target configurations

ª  Torque-Generic-Interactive
ª  PBS-Generic-Interactive
ª  OpenMPI-Generic-Interactive

Parallel Debugging Debug-1

Create a Debug Configuration
ª  A debug configuration is

essentially the same as a run
configuration (like we used
in the Running an Application
module)

ª  It is possible to re-use an
existing configuration and
add debug information

ª  Use the drop-down next to
the debug button (bug icon)
instead of run button

ª  Select Debug
Configurations… to open
the Debug Configurations
dialog

Parallel Debugging Debug-2

Create a New Configuration

ª  Select the existing
configuration

ª  Click on the new button to
create a new configuration

Parallel Debugging Debug-3

Configure the Resources Tab

ª  Select the new
target system
configuration

ª  Choose the queue
ª  Make sure number of

nodes is correct
ª  Make sure the

mpirun command is
selected

ª  Select the number of
processes (in this
case use 5)

ª  Configure modules if
required

Parallel Debugging Debug-4

Configure the Application Tab (Optional)

ª  Select Application tab
ª  Make sure the Project is

correct
ª  Select the application

executable

Parallel Debugging Debug-5

Configure the Debug Tab (Optional)

ª  Select Debugger tab
ª  Debugger will stop at

main() by default
ª  By default the built-in

SDM will be used
ª  Override this if you want to

use your own SDM

ª  Click on Debug to launch

the program

Parallel Debugging Debug-6

Exercise

1.  Open the debug configuration dialog
2.  Create a new configuration
3.  Select the edu.sdsc.trestles.torque.interactive.openmpi

target configuration
4.  Configure the Debug tab

ª  Queue: shared
ª  Number of nodes: 1:ppn=5
ª  MPI Command: mpirun
ª  MPI Number of Processes: 5

5.  Launch the debugger

Parallel Debugging Debug-7

ª  Parallel Debug
view shows job
and processes
being debugged

ª  Debug view shows
threads and call
stack for individual
processes

ª  Source view
shows a current
line marker for all
processes

The Parallel Debug Perspective (1)

Parallel Debugging Debug-8

The Parallel Debug Perspective (2)

ª  Breakpoints view

shows breakpoints
that have been set
(more on this later)

ª  Variables view
shows the current
values of variables
for the currently
selected process in
the Debug view

ª  Outline view (from
CDT) of source
code

Parallel Debugging Debug-9

Stepping All Processes
ª  The buttons in the

Parallel Debug View
control groups of
processes

ª  The Step Over button
will step all processes
one line

ª  The process icons will
change to green
(running), then back to
yellow (suspended)

ª  Yhe current line marker
will move to the next
source line

Parallel Debugging Debug-10

Stepping An Individual Process
ª  The buttons in the

Debug view are used
to control an
individual process, in
this case process 0

ª  The Step Over button
will control just the
one process

ª  There are now two
current line markers,
the first shows the
position of process 0,
the second shows the
positions of processes
1-4

Parallel Debugging Debug-11

Process Sets (1)

ª  Traditional debuggers apply operations to a single
process

ª  Parallel debugging operations apply to a single process
or to arbitrary collections of processes

ª  A process set is a means of simultaneously referring to
one or more processes

Parallel Debugging Debug-12

Process Sets (2)

ª  When a parallel debug session is first started, all
processes are placed in a set, called the Root set

ª  Sets are always associated with a single job
ª  A job can have any number of process sets
ª  A set can contain from 1 to the number of processes in

a job

Parallel Debugging Debug-13

Operations On Process Sets
ª  Debug operations on the

Parallel Debug view
toolbar always apply to the
current set:
ª  Resume, suspend, stop,

step into, step over, step
return

ª  The current process set is
listed next to job name
along with number of
processes in the set

ª  The processes in process
set are visible in right hand
part of the view

Root set = all processes

Parallel Debugging Debug-14

Create set Remove
from set

Delete
set

Change
current set

Managing Process Sets

ª  The remaining icons in the toolbar of the Parallel
Debug view allow you to create, modify, and delete
process sets, and to change the current process set

Parallel Debugging Debug-15

Creating A New Process Set
ª  Select the processes in

the set by clicking and
dragging, in this case,
the last three

ª  The Create Set button
enables a new process
set to be created

ª  The set can be given a
name, in this case
workers

ª  The view is changed to
display only the
selected processes

Parallel Debugging Debug-16

Stepping Using New Process Set
ª  With the workers set

active, the Step Over
button will now
operated on only these
processes

ª  Only the first line
marker will move

ª  After stepping a couple
more times, two line
markers will be visible,
one for the single
master process, and
one for the 4 worker
processes

Parallel Debugging Debug-17

Process Registration

ª Process set commands apply to groups of
processes

ª For finer control and more detailed
information, a process can be registered and
isolated in the Debug view

ª Registered processes, including their stack
traces and threads, appear in the Debug view

ª Any number of processes can be registered,
and processes can be registered or
un-registered at any time

Parallel Debugging Debug-18

Process Registration (2)
ª  By default, process 0 was

registered when the debug
session was launched

ª  Registered processes are
surrounded by a box and
shown in the Debug view

ª  The Debug view only shows
registered processes in the
current set

ª  Since the “workers” set
doesn’t include process 0, it
is no longer displayed in the
Debug view

Parallel Debugging Debug-19

Registering A Process
ª  To register a process,

double-click its process
icon in the Parallel
Debug view or select a
number of processes and
click on the register
button

ª  To un-register a process,
double-click on the
process icon or select a
number of processes and
click on the unregister
button

Individual
(registered)
processes

Groups (sets)
of processes

Debug-20 Parallel Debugging

Current Line Marker

ª The current line marker is used to show the
current location of suspended processes

ª In traditional programs, there is a single
current line marker (the exception to this is
multi-threaded programs)

ª In parallel programs, there is a current line
marker for every process

ª The PTP debugger shows one current line
marker for every group of processes at the
same location

Parallel Debugging Debug-21

Multiple processes marker

Registered process marker

Un-registered process marker

Colors And Markers

ª  The highlight color depends on
the processes suspended at
that line:
ª  Blue: All registered process(es)
ª  Orange: All unregistered

process(es)
ª  Green: Registered or unregistered

process with no source line (e.g.
suspended in a library routine)

ª  The marker depends on the
type of process stopped at that
location

ª  Hover over marker for more
details about the processes
suspend at that location

Parallel Debugging Debug-22

Exercise

1.  From the initial debugger session, step all processes
until the current line is just after MPI_Init (line 68)

2.  Create a process set called “workers” containing
processes 1-4

3.  Step the “worker” processes twice, observe two line
markers

4.  Hover over markers to see properties
5.  Switch to the “root” set
6.  Step only process 0 twice so that all processes are now

at line 71 (hint – use the debug view)

Parallel Debugging Debug-23

ª  Apply only to processes in the particular set that is
active in the Parallel Debug view when the breakpoint
is created

ª  Breakpoints are colored depending on the active
process set and the set the breakpoint applies to:
ª Green indicates the breakpoint set is the same

as the active set.
ª  Blue indicates some processes in the breakpoint set are

also in the active set (i.e. the process sets overlap)
ª  Yellow indicates the breakpoint set is different from the

active set (i.e. the process sets are disjoint)
ª  When the job completes, the breakpoints are

automatically removed

Breakpoints

Parallel Debugging Debug-24

Creating A Breakpoint
ª  Select the process set that

the breakpoint should apply
to, in this case, the workers
set

ª  Double-click on the left edge
of an editor window, at the
line on which you want to set
the breakpoint, or right click
and use the Parallel
Breakpoint�Toggle
Breakpoint context menu

ª  The breakpoint is displayed
on the marker bar

Parallel Debugging Debug-25

Hitting the Breakpoint
ª  Switch back to the Root set

by clicking on the Change
Set button

ª  Click on the Resume button
in the Parallel Debug view

ª  In this example, the three
worker processes have hit the
breakpoint, as indicated by
the yellow process icons and
the current line marker

ª  Process 0 is still running as its
icon is green

ª  Processes 1-4 are suspended
on the breakpoint

Parallel Debugging Debug-26

More On Stepping
ª  The Step buttons are only

enabled when all processes
in the active set are
suspended (yellow icon)

ª  In this case, process 0 is still
running

ª  Switch to the set of
suspended processes (the
workers set)

ª  You will now see the Step
buttons become enabled

Parallel Debugging Debug-27

Breakpoint Information

ª Hover over breakpoint icon
ª Will show the sets this breakpoint applies to

ª Select Breakpoints view
ª Will show all breakpoints in all projects

Parallel Debugging Debug-28

ª Use the menu in the breakpoints view to group
breakpoints by type

ª Breakpoints sorted by breakpoint set (process
set)

Breakpoints View

Parallel Debugging Debug-29

ª  Apply to all processes and all jobs
ª  Used for gaining control at debugger startup
ª  To create a global breakpoint

ª  First make sure that no jobs are selected (click in white
part of jobs view if necessary)

ª Double-click on the left edge of an editor window
ª Note that if a job is selected, the breakpoint will apply to

the current set

Global Breakpoints

Parallel Debugging Debug-30

Exercise

1.  Select the “worker” process set
2.  Create a breakpoint by double-clicking on right hand

bar at line 88 (worker function)
3.  Hover over breakpoint to see properties
4.  Switch to “root” process set
5.  Observer breakpoint color changes to blue
6.  Resume all processes
7.  Observe “worker” processes at breakpoint, and process

0 still running (green icon)
8.  Switch to “worker” process set
9.  Step “worker” processes over worker() function
10. Observe output from program

Parallel Debugging Debug-31

Terminating A Debug Session
ª  Click on the Terminate

icon in the Parallel
Debug view to
terminate all processes
in the active set

ª  Make sure the Root set
is active if you want to
terminate all processes

ª  You can also use the
terminate icon in the
Debug view to
terminate the currently
selected process

Parallel Debugging Debug-32

Cancelling The Job
ª  Interactive jobs will continue

until the reservation time has
expired

ª  You can cancel the job once
the debug session is finished

ª  Locate the job in the Active
Jobs view
ª  Use the view menu to filter for

only your jobs if there are too
many

ª  Right click on the job and
select Cancel Job

Parallel Debugging Debug-33

Exercise

1.  Switch to the “root” set
2.  Terminate all processes
3.  Switch to the System Monitoring perspective
4.  Right-click on your running job and select Cancel

Parallel Debugging Debug-34

Optional Exercise

1.  Launch another debug job
2.  Create a breakpoint at line 71 in main.c
3.  Resume all processes
4.  Select the Variables view tab if not already selected
5.  Observe value of the “tid” variable
6.  Register one of the worker processes
7.  Select stack frame of worker process in Debug view
8.  Observe value of the “tid” variable matches worker

process
9.  Switch to the breakpoints view, change grouping
10. Terminate all processes
11. Switch to the System Monitoring perspective and

cancel the job
Parallel Debugging Debug-35

Performance Tuning
and Analysis Tools

ª Objective
ª Become familiar with tools integrated with PTP, to help

enhance performance of parallel applications
ª Contents

ª Overview of ETFw and Performance Tools

Performance and Analysis
Tools

Perf-0

PTP/External Tools Framework
formerly “Performance Tools Framework”

Goal:
ª Reduce the “eclipse plumbing”

necessary to integrate tools
ª Provide integration for

instrumentation, measurement, and
analysis for a variety of performance
tools

ª  Dynamic Tool Definitions:
Workflows & UI

ª  Tools and tool workflows are specified in an XML file
ª  Tools are selected and configured in the launch

configuration window
ª  Output is generated, managed and analyzed as

specified in the workflow
ª  One-click ‘launch’ functionality
ª  Support for development tools such as TAU, PPW and

others.
ª  Adding new tools is much easier than developing a full

Eclipse plug-in

Performance and Analysis Tools Perf-1

SAX and JAXB Tool Definitions

ª Prior implementations of ETFW used a simple SAX
based schema to define tool workflows

ª By default workflows now use the more powerful
JAXB schema that defines PTP’s resource
manager

ª Legacy workflows can still be loaded by selecting
the SAX parser in PTP options
ª Window->Preferences->

Parallel Tools->External Tools

Performance and Analysis
Tools

Perf-2

Performance Tuning
and Analysis Tools - TAU

ª Objective
ª Become familiar with tools integrated with PTP, to help

enhance performance of parallel applications

ª Contents
ª Performance Tuning and external tools:

ª PTP External Tools Framework (ETFw), TAU
Hands-on exercise using TAU with PTP

TAU TAU-1

TAU: Tuning and Analysis Utilities

ª  TAU is a performance evaluation tool
ª  It supports parallel profiling and tracing

ª  Profiling shows you how much (total) time was spent in each routine
ª  Tracing shows you when the events take place in each process along

a timeline
ª  TAU uses a package called PDT (Performance Database Toolkit) for

automatic instrumentation of the source code
ª  Profiling and tracing can measure time as well as hardware

performance counters from your CPU (or GPU!)
ª  TAU can automatically instrument your source code (routines, loops,

I/O, memory, phases, etc.)
ª  TAU runs on all HPC platforms and it is free (BSD style license)
ª  TAU has instrumentation, measurement and analysis tools

ª  paraprof is TAU’s 3D profile browser

TAU TAU-2

TAU Performance System Architecture

TAU-3 TAU

PTP TAU plug-ins
http://www.cs.uoregon.edu/research/tau

ª  TAU (Tuning and Analysis Utilities)
ª  First implementation of External Tools Framework (ETFw)
ª  Eclipse plug-ins wrap TAU functions, make them available

from Eclipse
ª  Full GUI support for the TAU command line interface
ª  Performance analysis integrated with development

environment

TAU TAU-4

TAU Integration with PTP

ª TAU: Tuning and
Analysis Utilities
ª Performance data

collection and analysis
for HPC codes

ª Numerous features
ª Command line interface

ª The TAU Workflow:
ª Instrumentation
ª Execution
ª Analysis

TAU TAU-5

TAU PTP Installation

ª  This tutorial assumes that the TAU extensions for PTP
are installed – they are not included in the
“Eclipse for Parallel Application Developers”

ª  The installation section (Module 1) shows how to install
TAU and other features from the PTP update site –
be sure TAU was selected

TAU TAU-6

To confirm:
ª Help>Install New Software…
ª Select the link “What is already
installed” at the bottom of the
dialog
ª You should see the TAU
Extension

Installing TAU Analysis Tools

ª  The TAU plugin can use ParaProf for visual analysis and TauDB
for organization of profiles

ª  To install these utilities on Mac or Linux platforms:
ª Download (browser, curl or wget)

 tau.uoregon.edu/tautools-latest.tgz
ª tar -zxf tautools-latest.tgz
ª cd tautools-latest
ª ./configure
ª Set path as shown (launch eclipse from this environment)
ª Run taudb_configure and follow the instructions

ª  Java WebStart: tau.uoregon.edu/paraprof
ª  TAU Installation, downloads and instructions: tau.uoregon.edu

TAU TAU-7

Assumptions
ª Obtain and install TAU*

ª Download at tau.uoregon.edu
ª  The website includes setup and user guides

ª Set up the $PATH on the remote machine*
ª  For TAU you should be able to run ‘which pprof’ on a remote login

and see a result from your TAU bin directory
ª On trestles.sdsc.edu this is accomplished by loading the tau module

in the environment manager for the build and launch configurations

ª Include ‘eclipse.inc’ in the makefile*
ª Create an empty eclipse.inc file in the same directory as the

makefile
ª  Place ‘include eclipse.inc’ in the makefile after regular compiler

definitions
ª  ETFw will modify eclipse.inc to set CC/CXX/FC variables
TAU TAU-8 * SC tutorial: this has been done for you

Selective Instrumentation
ª By default tau provides timing data for each

subroutine of your application
ª Selective instrumentation allows you to include/

exclude code from analysis and control additional
analysis features
ª  Include/exclude source files or routines
ª Add timers and phases around routines or arbitrary code
ª  Instrument loops
ª Note that some instrumentation features require the PDT

ª Right click on calc.c, init.c, diag.c go to the Selective
Instrumention option and select Instrument Loops

ª Note the creation of tau.selective (refresh if needed)

TAU TAU-9

Begin Profile Configuration

ª The ETFw uses the same run configurations and
resource managers as debugging/launching

ª Click on the ‘Run’ menu or the right side of the
Profile button

ª From the dropdown menu select ‘Profile

configurations…’

TAU TAU-10

Select Configuration

ª  Select the shallow configuration
prepared earlier

ª  The Resource and Application
configuration tabs require little or
no modification
ª  We are using the same resource

manager and Torque settings
ª  Since we are using a makefile project

the application will be rebuilt in and
run from the previously selected
location

TAU TAU-11

Performance Analysis tab is
present in the Profile
Configurations dialog

Select Tool/Workflow

ª Select the Performance Analysis tab and
choose the TAU tool set in the ‘Select Tool’
dropdown box
ª Other tools may be available, either installed as

plug-ins or loaded from workflow definition XML files
ª Configuration sub-panes appear depending on the

selected tool

TAU TAU-12

Tabs may be
hidden if the
window is too
small

Select TAU Configuration

ª Choose the TAU Makefile tab:

ª All TAU configurations in
remote installation are
available

ª Check MPI and PDT
checkboxes to filter listed
makefiles

ª Make your selection in the
Select Makefile: dropdown
box

ª Select Makefile.tau-mpi-pdt

TAU TAU-13

Choose PAPI Hardware Counters
ª When a PAPI-enabled TAU

configuration is selected the PAPI
Counter tool becomes available
ª Select the ‘Select PAPI Counters’

button to open the tool
ª Open the PRESET subtree
ª Select PAPI_L1_DCM (Data cache

misses)
ª Scroll down to select PAPI_FP_INS

(Floating point instructions)
ª Invalid selections are automatically

excluded
ª Select OK
ª Not available on trestles.sdsc.edu

TAU TAU-14

Compiler Options
ª TAU Compiler Options

ª Set arguments to TAU compiler scripts
ª Control instrumentation and

compilation behavior
ª Verbose shows activity of compiler

wrapper
ª KeepFiles retains instrumented source
ª  PreProcess handles C type ifdefs in

fortran
ª  In the Selective Instrumentation tab

select Internal then hit Apply
ª  Scroll to bottom of the Tau Compiler tab

and activate TauSelectFile to use
tau.selective

TAU TAU-15

Runtime Options
ª TAU Runtime options

ª Set environment variables used by
TAU

ª Control data collection behavior
ª Verbose provides debugging info
ª Callpath shows call stack

placement of events
ª Throttling reduces overhead
ª Tracing generates execution

timelines
ª  Set Profile Format to merged

TAU TAU-16

Hover help

Working with Profiles
ª  Profiles are uploaded to

selected database
ª  A text summary may be

printed to the console
ª  Profiles may be uploaded to

the TAU Portal for viewing
online
ª tau.nic.uoregon.edu

ª  Profiles may be copied to
your workspace and loaded
in ParaProf from the
command line. Select Keep
Profiles

TAU TAU-17

ª  Once your TAU launch is
configured select ‘Profile’
ª  Notice that the project rebuilds with TAU compiler commands
ª  The project will execute normally but TAU profiles will be generated
ª  TAU profiles will be processed as specified in the launch configuration.
ª  If you have a local profile database the run will show up in the

Performance Data Management view
ª Double click the new entry to view in ParaProf
ª Right click on a function bar and select Show Source Code for

source callback to Eclipse

Launch TAU Analysis

TAU TAU-18

Paraprof
ª Use ParaProf for profile visualization to identify

performance hotspots
ª Inefficient sequential computation
ª Communication overhead
ª IO/Memory bottlenecks
ª Load imbalance
ª Suboptimal cache performance

ª Compare multiple trials in PerfExplorer to identify
performance regressions and scaling issues

ª To use ParaProf, install TAU from tau.uoregon.edu or
use Java webstart from tau.uoregon.edu/paraprof

TAU TAU-19

Exercise
ª  Multi-Trial profile comparison

1.  Edit the shallow Makefile, adding -O3 to CFLAGS and FFLAGS
2.  Rerun the analysis (Run->Profile Configurations. Hit Profile)
3.  A second trial, distinguished by a new timestamp, will be

generated
ª  It will appear in your Performance Data Manager view if a profile

database is available
ª  Also present in the Profile subdirectory of your project directory
ª  If you do not see a Profile directory right click on your project and go

to Synchronization->'Sync All Now'
4.  Load the two trials in paraprof (on the command line: paraprof /

path/to/tauprofile.xml)
5.  Open Windows->ParaProf Manager
6.  Expand your database down to reveal all trials
7.  Right click on each trial and click 'Add Mean to Comparison

Window' to visualize the two trials side by side

TAU TAU-20

Gcov and gprof support in linux tools
ª Objective

ª Learn how to use Eclipse-based interfaces to GNU tools
Gcov and Gprof

ª Contents
ª Build with “-pg” for gprof profiling
ª Build with “-ftest-coverage –fprofile-arcs” for gcov
ª Run gcov to determine code coverage – which parts of

your program are logically getting exercised
ª Run gprof to determined which parts of your program

are taking most of the execution time

Linux-0 Linux Tools

Linux Tools

ª What is Linux Tools?
ª http://eclipse.org/

linuxtools/
ª Builds on CDT for C/C++
ª Integrates popular native

development tools such as
Valgrind, OProfile, RPM,
SystemTap, GCov, GProf,
LTTng, etc. – into Eclipse

Linux-1 Linux Tools

http://eclipse.org/linuxtools

Linux Tools - Installation

ª Some of the Linux Tools
are included with Eclipse
for Parallel Application
Developers package

ª Everything you need for
this tutorial is in the
package

ª To install manually:
ª  Help > Install New Software
ª  In Work With: Select Kepler update

site
ª  Under Linux Tools, Select the tools

you want or just select all of them
ª  Some cannot be installed on all

non-Linux platforms
ª  Click Next> … and continue to end of

installation and restart Eclipse when
prompted

Linux-2 Linux Tools

Linux Tools - usage

ª With a synchronized project, you only need gprof/gcov
available on the remote system. (Even the Windows
client can view the gprof and gcov output files.)

ª Compiler flags
ª  -pg to profile with gprof for the GNU compilers
ª  -ftest-coverage -fprofile-arcs for gcov support

ª  It’s ok to use both at the same time at low optimization settings

ª Re-run the application
ª With synchronized projects, remember to re-sync to

retrieve the resultant files
ª gprof -s shallow gmon_shallow.* : creates a

summary profile (gmon.sum) from MPI programs with a
profile per rank

Linux-3 Linux Tools

Linux Tools – click to view
ª  Double-click gmon.* for gprof view
ª  Double-click *.gcno or *.gcda for gcov view

Linux-4 Linux Tools

Linux Tools – click to view
ª  Double-click gmon.* for gprof view
ª  Double-click *.gcno or *.gcda for gcov view,

ª  It will ask for binary file location
ª  Coverage Result: for Windows, select src file only (do not select the whole

binary file in the radio button of the dialog box)

Linux-5 Linux Tools

Windows
only

Windows only.
Mac/Linux can show
coverage for whole
file

Opening a profile with gprof viewer

Linux-6 Linux Tools

Note: since we’ve changed filename from ‘gmon.out’ to gmon_shallow.xxx
we will force the gprof editor to be invoked for the files.
Use Right mouse > Open With… > Other … and choose Gprof Editor

Gprof tab

Linux-7 Linux Tools

Double-click on gmon.out file to open
gprof viewer

Run code, inspect gcov display

Linux-8 Linux Tools

Double-click on a source file in gcov view to see code
coverage highlighted in source file

Gcov with a production code, unexecuted region

Linux-9 Linux Tools

gprof with shallow project, MPI

The Makefile CFLAGS and FFLAGS are modified as shown to
support profiling and coverage at the same time.
We have created the Makefile so you should just be able to
uncomment these lines.

Linux-10 Linux Tools

Add compiler flags to Makefile

gprof with shallow project, MPI (2)

Setup the MPI run configuration with the Environment variable
GMON_OUT_PREFIX defined with a /full/path/name for your
individual MPI rank gmon outputs. By default gmon.out is used but
MPI doesn't do that well and you end up with a profile that's missing
most of the information, so by using GMON_OUT_PREFIX, each MPI
rank adds its process id to its gmon output filename.

Linux-11 Linux Tools

Modify Run Configuration
Run > Run Configurations … to modify existing Run Configuration

Make this the fully qualified path+prefix
for gmon output. E.g.
/home/userid/shallow/gmon_shallow
(Otherwise they end up in a scratch dir)

gprof with shallow project, MPI (3)

Linux-12 Linux Tools

ª Run from Run Configuration dialog

ª See build results in
 Console

ª See new
 files in Project Explorer
 (You may need to
 force a Sync)

gprof with shallow project, 1 rank

ª Open gmon file with gprof viewer

ª Double-click on gmon.out file

 -or- since gmon_shallow.xxx has non-standard file types ….

ª Right click on gmon_shallow.xxx file and select
Rightmouse >Open With… Other… and select
Gprof Editor

Linux-13 Linux Tools

gprof with shallow project, 1 rank (2)

View gmon data with gprof viewer

Linux-14 Linux Tools

It's interesting to
compare the summary
gmon output to that
from one of the ranks.

This view shows a
gmon.out file (you have
a gmon_shallow.xxx
file) from a single rank.

	

Gprof with shallow project, summary

Linux-15 Linux Tools

Aggregate the gmon output – invoke from a terminal:
 gprof -s shallow gmon_shallow.*  
This creates a gmon.sum file

Force a sync to
see the file in
Project Explorer

Double-click to
open the gmon.sum
File with the
gprof viewer

Gprof viewer does not currently
work well on Windows

Linux-16 Linux Tools

Windows: gprof with
shallow project,
summary, use a
terminal window to
create text file

a. Invoke cmd line gprof
b. Sync to see file
c. Double-click to view
txt file

The linuxtools team
knows about the issue
with Juno/Kepler and
they’re working on it.

Gprof viewer still useful on Windows

Linux-17 Linux Tools

Windows: Expand the
gprof tab view of
gmon.out (copy of one
of the ranks output).

You can use the chart
tool to make charts of
the data in the gprof
table you select.

Gcov with shallow project

The gcov view is simlar to the gprof view but keep in mind that you're
looking at code coverage and not necessarily performance or timing
information (though there is a relationship...code not executed is
performing quite well !). Also note that multiple executions will
accumulate values in the gcov output files until they are removed or
truncated to zero-length (2nd run to demonstrate this).

Double-click
on any of the
*.gcda or *.gcno
to open this
gcov viewer

Linux-18 Linux Tools

Gcov with shallow project,
integration with CDT editor

Selecting (double click) a source code line from either the gcov or
gprof view and you'll see the file and routine highlighted in the
editor. Also notice the support for the .f90 file and its routines.

Linux-19 Linux Tools

Exercise

Follow directions in previous slides to
1.  Add the compiler flags to Makefile
2.  Modify run configuration as described (add gmon

prefix), and Run
3.  View gmon and gcov files with gprof and gcov

viewers

Linux Tools Linux-20

Optional Exercise
1)  Run the shallow application with gcov compiler flags enabled.
a)  Re-sync with Sync Active Now under Synchronization
b)  View the tstep.gcno file and note the count, then repeat 1)a-b ,

have the counts changed?

2) Compare the tstep.f90 loops at lines 61, 70, 80 in the gprof and

gcov displays .
a)  Change the Makefile to use –O3 with FFLAGS and clean/rebuild/re-

run
b)  gprof –s shallow gmon_shallow.273* [your most recent gmon_

files from the run you just finished]
c)  Re-sync the project
d)  Does the gprof view of gmon.sum still exactly match up with the

gcov display? If not, what happened to the missing loop(s)?

Linux-21 Linux Tools

Tutorial Wrap-up

ª Objective
ª How to find more information on PTP
ª Learn about other tools related to PTP
ª See PTP upcoming features

ª Contents
ª Links to other tools, including performance tools
ª Planned features for new versions of PTP
ª Additional documentation
ª How to get involved

WrapUp-0 Tutorial Wrap Up

Useful Eclipse Tools

ª  Linux Tools (autotools, valgrind, Oprofile, Gprof)
ª  http://eclipse.org/linuxtools (part of Parallel package)

ª  Python
ª  http://pydev.org

ª  Ruby
ª  http://www.aptana.com/products/radrails

ª  Perl
ª  http://www.epic-ide.org

ª  VI bindings
ª  Vrapper (open source) - http://vrapper.sourceforge.net
ª  viPlugin (commercial) - http://www.viplugin.com

Tutorial Wrap Up WrapUp-1

Online Information
ª Information about PTP

ª PTP online help
ª http://help.eclipse.org

ª Main web site for downloads, documentation, etc.
ª http://eclipse.org/ptp

ª Wiki for designs, planning, meetings, etc.
ª http://wiki.eclipse.org/PTP

ª Information about Photran

ª Main web site for downloads, documentation, etc.
ª http://eclipse.org/photran

Tutorial Wrap Up WrapUp-2

Mailing Lists

ª  User Mailing Lists
ª  PTP

ª http://dev.eclipse.org/mailman/listinfo/ptp-user
ª  Photran

ª  http://dev.eclipse.org/mailman/listinfo/photran
ª Major announcements (new releases, etc.) - low volume

ª http://dev.eclipse.org/mailman/listinfo/ptp-announce

ª  Developer Mailing Lists

ª Developer discussions - higher volume
ª http://dev.eclipse.org/mailman/listinfo/ptp-dev

Tutorial Wrap Up WrapUp-3

Getting Involved

ª See http://eclipse.org/ptp
ª Read the developer documentation on the wiki

ª http://wiki.eclipse.org/PTP
ª Join the mailing lists
ª Attend the monthly developer meetings

ª Conf Call Monthly: Second Tuesday, 1:00 pm ET
ª  Details on the PTP wiki

ª Attend the monthly user meetings
ª Teleconf Monthly: 4th Wednesday, 1:00 pm ET
ª Details on the PTP wiki

Tutorial Wrap Up WrapUp-4

PTP Tutorial Wrap-Up

ª Please fill out the feedback form

ª Your feedback is valuable!

Thanks for attending
We hope you found it useful

ª 

Tutorial Wrap Up WrapUp-5

	ptp-00-SEA2014.ppt
	ptp-01-install.ppt
	ptp-02-intro.ppt
	ptp-03-01-basics.ppt
	ptp-03-02a-syncProj.ppt
	ptp-03-02b-cvs.ppt
	ptp-03-03-editor.ppt
	ptp-03-04-mpi.ppt
	ptp-03-tunnel.ppt
	ptp-04-01-build.ppt
	ptp-04-02-run.ppt
	ptp-05-fortran.ppt
	ptp-06-advfeat.ppt
	ptp-07-ncsa.ppt
	ptp-08-debug.ppt
	ptp-09-perf.ppt
	ptp-10-perf-tau.ppt
	ptp-12-gprof-gcov.ppt
	ptp-20-wrapup.ppt

