
A New and Improved Eclipse
Parallel Tools Platform: Advancing the
Development of Scientific Applications

Greg Watson, IBM
g.watson@computer.org

Beth Tibbitts, IBM
tibbitts@us.ibm.com

Portions of this material are supported by or based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under its Agreement No. HR0011-07-9-0002, the
United States Department of Energy under Contract No. DE-FG02-06ER25752, the Blue Waters
sustained petascale computing project, which is supported by the National Science Foundation
under award number OCI 07-25070, and the SI2-SSI Productive and Accessible Development
Workbench for HPC Applications, which is supported by the National Science Foundation under
award number OCI 1047956

Jay Alameda, NCSA
jalameda@ncsa.uiuc.edu

Jeff Overbey, UIUC
overbey2@illinois.edu

July 18, 2011

Galen Arnold, NCSA
arnoldg@ncsa.uiuc.edu

Tutorial Outline
Time (Tentative!) Module Topics Presenter

8:00-8:30 1. Overview of Eclipse
 and PTP, Installation check

  Introduction to Eclipse/PTP; demo Greg

 8:30-9:30 3. CDT: Working with C/C++
Remote Projects

  Eclipse basics; Creating a new project
  Building and launching remotely

Beth

9:30-10:00 4. Working with MPI   Makefiles, PLDT MPI tools
  Resource Managers
  Launching a parallel application

Jay

10:00-10:30 BREAK

10:30-11:00 4. Working with MPI   Makefiles, PLDT MPI tools
  Resource Managers
  Launching a parallel application

Jay

11:00-12:00 5. Debugging   Debugging an MPI program Greg

12:00 – 1:00 Lunch

1:00-2:15 6. Fortran; Refactoring   Photran overview; comparison w/ CDT
  Refactoring support

Jeff

2:15-2:30 BREAK

2:30-4:30 7. Advanced Features:
Performance Tuning & Analysis
Tools

  PLDT (MPI, OpenMP, UPC tools) (20 min)
  TAU, ETFw (20)
  GEM (20)
  Linux Tools (gprof, gcov) (20 min)
  Configuring Resource Managers (20 min)

Beth
Suzanne
Alan
Galen
Jay

4:30- 5:00 8. Other Tools, Wrapup   NCSA HPC Workbench, Other Tools, website, mailing
lists, future features

Jay/Beth

Final Slides, Installation
Instructions

 Please go to
http://wiki.eclipse.org/PTP/
tutorials/TG11 for slides and
installation instructions

1-0 Module 1

Module 1: Introduction

 Objective
 To introduce the Eclipse platform and PTP

 Contents
 What is Eclipse?
 What is PTP?

1-1 Module 1

What is Eclipse?

 A vendor-neutral open-source workbench for
multi-language development

 A extensible platform for tool integration
 Plug-in based framework to create, integrate

and utilize software tools

1-2 Module 1

Eclipse Platform

 Core frameworks and services with which all
plug-in extensions are created

 Represents the common facilities required by
most tool builders:
 Workbench user interface
 Project model for resource management
 Portable user interface libraries (SWT and JFace)
 Automatic resource delta management for

incremental compilers and builders
 Language-independent debug infrastructure
 Distributed multi-user versioned resource

management (CVS supported in base install)
 Dynamic update/install service

1-3 Module 1

Plug-ins

  Java Development Tools (JDT)
  Plug-in Development Environment (PDE)
  C/C++ Development Tools (CDT)
  Parallel Tools Platform (PTP)
  Fortran Development Tools (Photran)
  Test and Performance Tools Platform (TPTP)
  Business Intelligence and Reporting Tools (BIRT)
  Web Tools Platform (WTP)
  Data Tools Platform (DTP)
  Device Software Development Platform (DSDP)
  Many more…

1-4

Launching & Monitoring

Eclipse Parallel Tools Platform (PTP)

Debugging

Coding & Analysis

Performance Tuning

Module 1

1-5 Module 1

Parallel Tools Platform (PTP)

  The Parallel Tools Platform aims to provide a highly
integrated environment specifically designed for parallel
application development

  Features include:
  An integrated development environment (IDE) that

supports a wide range of parallel architectures and runtime
systems

  A scalable parallel debugger
  Parallel programming tools

(MPI, OpenMP, UPC, etc.)
  Support for the integration

of parallel tools
  An environment that simplifies the

end-user interaction with parallel systems
  http://www.eclipse.org/ptp

1-6 Module 1

PTP Features Demo…

  Creating a project from existing source code –
importing into Eclipse and PTP

  Content assist, searching, include browser
  Building the project
  Launching an MPI program
  Debugging an MPI program

Module 3: Working with C/C++
 Objective

 Learn basic Eclipse concepts: Perspectives, Views, …
 Learn how to use Eclipse to manage a remote project
 Learn how to use Eclipse to develop C programs
 Learn how to launch and run a remote C program

 Contents
 Brief introduction to the C/C++ Development Tools

(CDT)
 Create a simple remote application
 Learn to launch a remote C application

Module 3 3-0

3-1

Login Information

 The hands on portion of this module will be
done on a remote system at SDSC, thank you
to SDSC!
 Lincoln.ncsa.uiuc.edu
 Train41-60
 TG11tr8L!

  See the following URL for more information on the
system
  http://www.sdsc.edu/us/resources/trestles/

 Each student will be assigned an ID and password
at the start of the tutorial

 Please use only this ID
 We are also working to make this work with Ranger

and Kraken, this work is not complete… Module 3

Eclipse Basics
  A workbench contains the menus, toolbars, editors and

views that make up the main Eclipse window

perspective Module 3

view
view

view

editor

  The workbench represents
the desktop development
environment
  Contains a set of tools

for resource mgmt
  Provides a common way

of navigating through
the resources

  Multiple workbenches
can be opened at the
same time

  Only one workbench can
be open on a workspace
at a time

3-2

Perspectives

 Perspectives define the layout of views and
editors in the workbench

 They are task oriented, i.e. they contain
specific views for doing certain tasks:
 There is a Resource Perspective for manipulating

resources
 C/C++ Perspective for manipulating compiled code
 Debug Perspective for debugging applications

  You can easily switch between perspectives

 If you are on the Welcome screen now, select
“Go to Workbench” now

Module 3 3-3

Switching Perspectives

  Three ways of changing
perspectives

  Choose the Window>Open
Perspective menu option

  Then choose Other…

  Click on the Open
Perspective button in the
upper right corner of screen

  Click on a perspective
shortcut button

 Switch perspective
on next slide…

Module 3 3-4

Switch to Remote C/C++ Perspective
  Select Window>Open

Perspective
  Then choose Other…
  Only needed if you’re not

already in the perspective

  What Perspective am in in?
 See title Bar

Module 3 3-5

Views

 The workbench window is
divided up into Views

 The main purpose of a view is:
 To provide alternative ways of presenting information
 For navigation
 For editing and modifying information

 Views can have their own menus and toolbars
 Items available in menus and toolbars are

available only in that view
 Menu actions only

apply to the view

 Views can be resized

view

view view

Module 3 3-6

Stacked Views

 Stacked views appear as tabs
 Selecting a tab brings that view to the

foreground

Module 3 3-7

Help

  To access help
  Help>Help Contents
  Help>Search
  Help>Dynamic Help

  Help Contents provides
detailed help on different
Eclipse features in a
browser

  Search allows you to
search for help locally, or
using Google or the Eclipse
web site

  Dynamic Help shows help
related to the current
context (perspective, view,
etc.)

Module 3 3-8

Preferences

  Eclipse Preferences allow
customization of almost
everything

  To open use
  Mac: Eclipse>Preferences…
  Others:

Window>Preferences…

 The C/C++ preferences
allow many options to be
altered

 In this example you can
adjust what happens in the
editor as you type.

Module 2 3-9

Preferences (2)

More C/C++ preferences:
 In this example the

Code Style preferences
are shown

 These allow code to be
automatically
formatted in different
ways

Module 2 3-10

3-11

Types of C/C++ Projects
  C/C++ Projects can be

  Local – source is located on local machine, builds happen locally
  Remote – source is either located on remote machine, or

synchronized with remote machine; builds take place on remote
machine

  Makefile-based – project contains its own makefile (or makefiles)
for building the application

  Managed– Eclipse manages the build process, no makefile
required

  Parallel programs can be run on the local machine or on a remote
system
  MPI needs to be installed
  An application built locally probably can’t be run on a remote

machine unless their architectures are the same
  We will show you how to create, build and run the program on a

remote machine
  We will create a remote Makefile project

-11 Module 3

Remote Projects

“Traditional” Remote Projects
  Source is located on remote machine
  Eclipse is installed on the local machine

and can be used for:
  Editing
  Building
  Running
  Debugging

  Source indexing is performed on remote
machine
  Enables call hierarchy, type

hierarchy, include browser, search,
outline view, and more…

  Builds are performed on remote machine
  Supports both managed and makefile

projects

  Application is run and debugged remotely
using the PTP resource managers

Synchronized Projects
  Source is located on both the local system

and on a remote target system. The two
copies are kept in sync by Eclipse.

  Eclipse is installed on the local machine
and can be used for:
  Editing
  Building
  Running
  Debugging
  Development can continue “off-line”

  Source indexing is performed on local
machine
  Enables call hierarchy, type

hierarchy, include browser, search,
outline view, and more…

  Builds are performed on one or more
remote machines
  Supports both managed and makefile

projects
  Application is run and debugged remotely

using the PTP resource managers

3-12 Module 3

7/18/11Module 4 4-13

Traditional Remote Projects

Preparation steps:

  We will set up an SSH terminal to the remote system to
copy some files

  Make sure you are in the
Remote C/C++ perspective

  Select the Remote Systems view
 Define a new connection
 Select “SSH Only”
 Then Next

3-14 Module 3

Preparation, continued

  Add lincoln’s host info
  Then Finish

  Right click on ssh
terminals, under lincoln

  Select Launch Terminal

3-15 Module 3

Preparation, continued

 Add your training
account login

 Click through any
RSA messages

 And now you have a
terminal to lincoln

3-16 Module 3

Why did we do this?

 To show you can gain “traditional” access to a
remote host through Eclipse

 And to have you stage some directories:
 Issue the following commands in the terminal

 cp –r ~jalameda/hello_world .
 cp –r ~jalameda/shallow .
 cp –r ~jalameda/mpi .

 This will give us some source code to work
with

3-17 Module 3

  Use File>New>Remote C/C++ Project to open the
new project wizard

  The wizard will take you through the steps for creating
the project

Creating a Remote C/C++ Project

Module 3 3-18

Don’t see the “Remote C/C++ Project” choice?
Make sure you are in the Remote C/C++ Perspective

New Remote Project Wizard

  Enter project name, e.g. “hello”
  Select a Remote Provider

  Remote providers supply different
ways of accessing remote (or local)
systems

  Choose Remote Tools

  A Connection specifies how to
connect to the remote host
  Click on the New… button to create a

new connection

3-19 Module 3

Remote Host Configuration

  Enter a connection name (can be
anything) for the Target name
  Use “lincoln.ncsa.uiuc.edu”

  The host is remote, so the Remote
host option should be checked

  Enter the host name or IP address of
the remote host for the Host
  Use “lincoln.ncsa.uiuc.edu”

  Enter the user name and
password supplied at the beginning of
the tutorial for the User and
Password

  Note: if your remote machine uses OTP
for authentication, leave the password
field blank

  Click Finish
3-20 Module 3

Project Location

  The Location is the directory on
the remote host containing the
source and executable files

  Click on the browse button to
browse for folders on the remote
machine
  You should see the folders in your

home directory
  Choose the “hello” directory

  Click OK

3-21 Module 3

Project Type
  The Project type determines

information about the project
  If the project is managed or

unmanaged (described later)
  The tool chain (compiler, linker, etc.)

to use when building
  If the project creates an executable,

static, or shared library
  Options available depend on whether

the project is local or remote
  Under Remote Makefile

Project, select Empty Project
  For Toolchains, select Other

Toolchain
  Click on Finish to complete the

wizard

3-22 Module 3

  If you need to change remote connection
information (such as username or
password), use the Remote
Environments view

Changing Remote Connection Information

3-23 Module 3

  Stop the remote
connection first

  Right-click and
select Edit

  Note: running server is shown in lower right
 Opening any remote file restarts it

Project Explorer View
  Shows the user’s projects
  Each project contains

  Source files
  Executable files
  Folders
 Metadata (not visible)

  Can have any number of projects
  We only have a single project so

far

Module 3 3-24

4-25

New Project Wizard:
Create a C Project

  The New Project Wizard is used
to create a C project

  Enter Project name
  Under Project Types, select

Makefile projectEmpty
Project
  Ensures that CDT will use existing

makefiles

  Select Finish
  When prompted to switch to the

C/C++ Perspective, select Yes

Module 4 4-25

Editor and Outline View
  Double-click on

source file to open
editor

  Outline view is
shown for file in
editor

  You should see
warnings on the
include files:
we will fix this
later

  Console shows
results of build

Module 3 3-26

Editors

  An editor for a resource (e.g. a file)
opens when you double-click on
a resource

  The type of editor depends on the type of the resource
  .c files are opened with the C/C++ editor
  Some editors do not just edit raw text

  When an editor opens on a resource, it stays open across
different perspectives

  An active editor contains menus and toolbars specific to that
editor

  When you change a resource, an asterisk on the editor’s
title bar indicates unsaved changes

editor

Module 3 3-27

  Save the changes by using Command/
Ctrl-S or File>Save

Source Code Editors & Markers

  A source code editor is a
special type of editor for
manipulating source
code

  Language features are
highlighted

  Marker bars for showing
  Breakpoints
  Errors/warnings
  Task Tags, Bookmarks

  Location bar for
navigating to interesting
features in the entire file

Icons:

Module 3 3-28

Line Numbers

  Text editors can show line numbers in the
left column

3-29 Module 3

  To turn on line
numbering:
  Right-mouse click in

the editor marker bar
  Click on Show Line

Numbers

Include File Locations

  Content assist and navigation
requires knowledge of include file
location on the remote system

  The editor will indicate warnings
on lines that have the problem

  Problems View will display a
warning

  The project properties must be
changed to resolve the problem

3-30 Module 3

Indexer: Unresolved inclusion: <stdio.h> in
file: /u/ac/etrain1/hello/hello.c:11. Please re-
configure project's remote include paths or
symbols.

  Open the project properties by
right-clicking on project and
select Properties

  Expand Remote
Development

  Select Remote Paths and
Symbols

  Select GNU C to change
C paths and symbols

  Click Add
  Enter “/usr/include”
  Click OK

Changing the Project Properties

Module 3 3-31

  Click OK to save the Project
Properties

  You will be prompted to
rebuild the index
  Select Yes

  Red warnings should be
gone from editor, since
Eclipse knows the location
of the include files now

Saving the Project Properties

Module 3 3-32

  On demand hyperlink
  Hold down Command/Ctrl key
  Click on element to navigate to

its definition in the header file
(Exact key combination
depends on your OS)

  E.g. Command/Ctrl and click on
EXIT_SUCCESS

  Open declaration
  Right-click and select Open

Declaration will also open the
file in which the element is
declared

  E.g. right-click on stdio.h and
select Open Declaration

Navigating to Other Files

Module 3 3-33

Content Assist & Templates
  Type an incomplete function name e.g. “get” into the editor,

and hit ctrl-space
  Select desired completion value with cursor or mouse

Module 3 3-34

Hit ctrl-space again
for code templates   Code Templates: type

‘for’ and Ctrl-space

  To manually build, select
the project and press the
the “build” button

  Alternatively, select Project>Build
Project

  To rebuild if project is already built,
Project > Clean…

Building the Project

  The project should build automatically when created
  If there is no makefile, then the build will fail

2-35 Module 2

After building the project:
  The Console view shows build output

  If the build is successful,
the executable should appear
in the project

Building the Project (2)

2-36 Module 2

Executable

Build Problems

  If there are problems, they
will be shown in a variety
of ways
  Marker on editor line
  Marker on overview ruler
  Listed in the Problems view

  Double-click on line in
Problems view to go to
location of error

Module 3 3-37

Fix Build Problems

  Save the file
  Rebuild by pressing build

button
  Problems view is now

empty

Module 3 3-38

  Fix errors by giving getenv an argument and fixing
declarations as shown

Create a Resource Manager

  A Resource Manager specifies how/where
programs will be launched

  Switch to the Parallel Runtime perspective
  Window>Open Perspective…

  In the Resource Managers view,
right-click and select Add Resource
Manager…

  Select Remote Launch and Next >

3-39 Module 3

Configure the Resource Manager

  Choose Remote Tools for
Remote service provider

  Choose “lincoln.ncsa.uiuc.edu”
for Connection name
  This was the connection used

when the project was created

  Click Finish

3-40 Module 3

  Right-click on the new
resource manager and select
Start Resource Manager
from the menu

  If the resource manager
starts successfully, the icon
should turn green

  An icon color of red indicates
a problem occurred

Start the Resource Manager

3-41 Module 3

NOTE: On some Linux systems, starting a resource
manager may appear to hang. Open the window
you launched Eclipse from and check if there is a
prompt for a kerberos username. Hit “enter” twice
if you see the prompt.

To run the application, create a
Run Configuration

  Open the run configurations
dialog
  Click on the arrow next to the run button
  Or use Run>Run Configurations…

  Select Parallel Application
  Select the New button

Create a Run Configuration

Depending on which flavor of
Eclipse you installed, you might
have more choices of application
types

Module 3 3-42

Complete the Resources Tab

  Select your Resource Manager
  Should be selected automatically if it has been started

  The Remote Launch doesn’t require additional attributes
  Other resource managers may have additional attributes, such as a

queue name, etc.

Module 3 3-43

Complete the Application Tab

Module 3 3-44

  Make sure “hello” is selected
for the Parallel Project

  Browse to find the
executable file for the
Application program

  Launch the application by
clicking the Run button

Viewing Program Output

  When the program runs, the Console view should
automatically become active

  Any output will be displayed in this view
  Stdout is shown in black
  Stderr is shown in red

Module 3 3-45

Other CDT features

 Searching
 Mark Occurrences
 Open Declaration / hyperlinking between files

in the editor

Module 3 3-46

First, return to the “Remote C/C++
Perspective”

Language-Based Searching

  “Knows” what things can
be declared in each
language (functions,
variables, classes,
modules, etc.)

  For example, search for
every call to a function
whose name starts with
“get”

  Search can be project- or
workspace-wide

3-47 Module 3

Mark Occurrences

 Double-click on a variable in the CDT editor
 All occurrences in the source file are

highlighted to make locating the variable
easier

 Alt-shift-O to turn off

3-48 Module 3

Open Declaration

  Jumps to the declaration of
a variable, function, etc.,
even if it’s in a different file

  Right-click on an identifier
  Click Open Declaration

  Can also Ctrl-click (Mac:
Cmd-click) on an identifier
to “hyperlink” to its
declaration

3-49 Module 3

Remote Projects - Location

  How to tell where a project
resides?

  Right-click Project
  Select Properties…

  In Properties dialog,
select Resource

3-50 Module 3

Remote Projects - Reopening

  When re-opening Eclipse
workbench, remote projects
will be closed

  To re-open a closed project,
Right-click on closed project
and select Open Project

  Open project shows folder
icon, and can be expanded to
show contents of project

3-51 Module 3

4-0

Module 4: Working with MPI
 Objective

 Learn how to develop, build and launch a parallel
(MPI) program on a remote parallel machine

 Contents
 Remote project setup
 Building with Makefiles
 MPI assistance features
 Working with resource managers
 Launching a parallel application

Module 4 4-0

4-1

Local vs. Remote
  PTP allows the program to be run locally if you have MPI

installed
 However we want to run the program on a remote

machine
  We will now show you how to run a parallel program on

a remote machine
 Interactively
 Through a batch system
 Interactively through a batch system

  We have provided the source code to an MPI program
on the remote machine

  The project will be created using this source code

Module 4 4-1

Creating a Remote MPI Project

  Like the previous module, create
a new Remote C/C++ project

  Enter “shallow” for the Project
Name

  Use the same Connection as before
  Click the Browse… button and

choose the directory “shallow” in
in your home directory

  Select a Remote Makefile Project
as before

  Click Finish

4-2 Module 4

You may be prompted to open
the Remote C/C++ Perspective

Changing the Project Build Properties

  The project makefile has a non-standard name
Makefile.mk

  We need to change the build
properties so that the project
will build
  By default, the project is built by

running “make”

  Right-click on project
“shallow” in the Project
Explorer

  Select Properties

4-3 Module 4

Changing the Build Command

  Select C/C++ Build
  Uncheck Use default build command
  Change the Build command to:

 make –f Makefile.mk

4-4 Module 4

Building the Project

  Click OK to save project properties after changing
build command

  Select project and hit the build button
  The project can be built at any time

by hitting this button

4-5 Module 4

4-6

Include File Locations

  Like the previous example, Eclipse content assist and
navigation require knowledge of include file locations on the
remote system
  Since the build will be running remotely, the compiler knows

how to find include files
  But Eclipse does not

  In Project Explorer,
right-click on project

  Select Properties

Module 4 4-6

Module 4 4-7

Include files on
abe.ncsa.uiuc.edu

Remote Paths and Symbols

In Project Properties,
  Expand Remote Development
  Select

Remote Paths and Symbols
  Select Languages>GNU C

  This is compiler on abe

  Click Add…
  Enter /usr/local/openmpi-1.4.2-intel-11.1/include

  Click OK, then Add… again
  Enter /usr/include

  Click OK
  Click OK to close preferences
  When prompted to rebuild

index, click OK

MPI-Specific Features

  PTP’s Parallel Language Development Tools (PLDT)
has several features specifically for developing MPI
code
 Show MPI Artifacts
 Code completion
 Context Sensitive Help for MPI
 Hover Help
 MPI Templates in the editor

4-8 Module 4

More MPI features covered in
Module 7: Advanced Features

4-9

Show MPI Artifacts

Module 4 4-9

  In Project Explorer, select a project, folder, or a single source file
  The analysis will be run on the selected resources

  Run the analysis by clicking on drop-down menu next to the
analysis button

  Selecting Show MPI Artifacts

4-10

MPI Artifact View

  Markers indicate the
location of artifacts in
editor

  The MPI Artifact View
list the type and location
of each artifact

  Navigate to source code
line by double-clicking on
the artifact

  Run the analysis on
another file (or entire
project!) and its markers
will be added to the view

  Remove markers via
  Click on column headings

to sort

Module 4 4-10

4-11

MPI Editor Features
  Code completion will show all

the possible MPI keyword
completions

  Enter the start of a keyword
then press <ctrl-space>

Module 4 4-11

  Hover over MPI API
  Displays the function

prototype and a
description

4-12

Context Sensitive Help
  Click mouse, then press help

key when the cursor is within a
function name
  Windows: F1 key
  Linux: ctrl-F1 key
  MacOS X: Help key or

HelpDynamic Help
  A help view appears (Related

Topics) which shows
additional information
(You may need to click on MPI
API in editor again, to
populate)

  Click on the function name to
see more information

  Move the help view within your
Eclipse workbench, if you like,
by dragging its title tab

Module 4 4-12

Some special
info has been
added for MPI

APIs

4-13

MPI Templates

 Example:
 MPI send-receive

 Enter:
 mpisr <ctrl-space>

 Expands to a send-receive
pattern

 Highlighted variable names
can all be changed at once

 Type mpi <ctrl-space> <ctrl-
space> to see all templates

Add more templates using Eclipse preferences!
C/C++>Editor>Templates

Extend to other common patterns

Module 4 4-13

 Allows quick entry of common patterns in MPI programming

4-14

Running the Program
 Creating a resource manager
 Starting the resource manager
 Creating a launch configuration
 Launching the application
 Viewing the application run

Module 4 4-14

4-15

Terminology

  The Parallel Runtime perspective is provided for
monitoring and controlling applications

  Some terminology
 Resource manager - Corresponds to an instance of

a resource management system (e.g. a job
scheduler). You can have multiple resource
managers connected to different machines.

 Queue - A queue of pending jobs
 Job – A single run of a parallel application
 Machine - A parallel computer system
 Node - Some form of computational resource
 Process - An execution unit (may be multiple

threads of execution)

Module 4 4-15

4-16

Resource Managers

  PTP uses the term “resource manager” to refer to any
subsystem that controls the resources required for launching a
parallel job.

  Examples:
 Job scheduler (e.g. LoadLeveler, PBS, SLURM)
  Interactive execution (e.g. Open MPI, MPICH2, etc.)

  Each resource manager controls one target system
  Resource Managers can be local or remote
  Note: PTP 5.0 is in transition with respect to resource managers

and status monitoring;
  PBS (“jaxb lml”) is new-style resource manager, with System Monitor

runtime
  All others are old-style resource managers, using Parallel Runtime

Module 4 4-16

4-17

Preparing to Launch

Module 4 4-17

  Setting up a resource manager is done in the Parallel
Runtime perspective

  Select Window>Open Perspective>Other
  Choose Parallel Runtime and click OK

4-18

Parallel Runtime Perspective

Resource
managers
view

Machines
view

Node details
view

Jobs List view

Module 4 4-18

Console
view

Properties
view

4-19

About PTP Icons

  Open using legend icon in
toolbar

Module 4 4-19

4-20

Running Jobs Interactively

  Interactive resource
managers will run the
parallel application
immediately

  They are also used for
debugging the application

  Right-click in Resource
Managers view and select
Add Resource Manager

  Choose the Open MPI
Resource Manager Type

  Select Next>

Module 4 4-20

4-21

Configure the Remote Location
  Choose Remote Tools for

Remote service provider
  Choose the remote

connection you made
previously

  Click Next>

Module 4 4-21

4-22

Configure the Resource Manager

Module 4 4-22

  The Open MPI resource
manager will auto detect the
version and use the
appropriate commands
  Change only if you’re an

expert
  Set the location of the

“mpirun” command if it is not
in your path

  Click Next>
  Change the Name or

Description of the resource
manager if you wish

  You can also set the resource
manager to automatically
start

  Click Finish

4-23

Starting the Resource Manager

  Right click on new
resource manager and
select Start resource
manager

  If everything is ok, you
should see the resource
manager change to green

  If something goes wrong,
it will change to red

Module 4 4-23

4-24

System Monitoring

  Machine status shown
in Machines view

  Node status also
shown Machines view

  Hover over node to see
node name

  Double-click on node to
show attributes

Module 4 4-24

4-25

  Open the run configuration
dialog Run>Run
Configurations…

  Select Parallel Application
  Select the New button

Create a Launch Configuration

Depending on which flavor of Eclipse you
installed, you might have more choices in

Application types
Module 4 4-25

4-26

Complete the Resources Tab

Module 4 4-26

  Enter a name for the
launch configuration,
e.g. “shallow”

  In Resources tab,
select the resource
manager you want to
use to launch this job

  Enter a value
in the Number of
processes field

  Other fields can be used
to specify resource
manager-specific
information
 E.g. specify

By node to allocate
each process to a
different node

4-27

Complete the Application Tab

  Select the Application
tab

  Choose the Application
program by clicking
the Browse button and
locating the executable
on the remote machine
  There should be a

“shallow” executable in
the “shallow” directory

  Select Display output
from all processes in
a console view

  Click Run to run the
application

Module 4 4-27

4-28

Viewing The Run

  Double-click a
node in machines
view to see which
processes ran on
the node

  Hover over a
process for tooltip
popup

  Job status and
information

Module 4 4-28

4-29

Viewing Program Output

  Console displays
combined output
from all processes

  Properties view
shows job details

Module 4 4-29

4-30

Using a Job Scheduler

Module 4 4-30

  Setting up a resource manager is done in the System
Monitoring perspective
  (For PTP 5.0.0, this applies to PBS)

  Select Window>Open Perspective>Other
  Choose System Monitoring and click OK

System Monitoring Perspective
  System view

  Jobs running
on system

  Active jobs

  Inactive jobs

Module 5 5-31

4-32

Using a Job Scheduler

  Right-click in Resource
Managers view and
select Add Resource
Manager

  Choose the PBS-
Generic-Batch
Resource Manager
Type

  Select Next>

Module 4 4-32

4-33

Configure the Remote Location
  Choose Remote Tools for

Remote service provider
  Choose the remote

connection you made
previously

  Click Next>

Module 4 4-33

4-34

Configure the Monitor
Connection

Module 4 4-34

  Keep default Monitor
Connection (same as Control
Connection), click Next

4-35

Configure the Common Resource
Manager Parameters

Module 4 4-35

  Keep default name
  Can automatically start

Resource Manager (leave
unselected today)

  Click Finish

4-36

Starting the Resource Manager

  Right click on new
resource manager and
select Start resource
manager

  If everything is ok,
you should see the
resource manager
change to green

  If something goes
wrong, it will change
to red

Module 4 4-36

4-37

System Monitoring

  System view, with
abstraction of nodes

  Active and inactive
jobs

  Hover over node to see
job running on node

Module 4 4-37

4-38

  Open the run configuration
dialog Run>Run
Configurations…

  Select Parallel Application
  Select the New

button

Create a Launch Configuration

Module 4 4-38

4-39

Complete the Resources Tab

  Enter a name for this
launch configuration, e.g.
“shallow-pbs-batch

  Choose the appropriate
Resource Manager (PBS-
Generic-Batch)

  In Resources tab, select
the PBS resource manager
you just created

  The MPI Command field
allows this job to be run
as an MPI job
  Choose mpirun

  Enter the resources
needed to run this job
  Use 1 nodes, 4 gb memory, 4

cores

  Select the destination
queue – lincoln_debug

Module 4 4-39

4-40

Complete the Application Tab

  Select the Application
tab

  Choose the Application
program by clicking the
Browse button and
locating the executable on
the remote machine
  Use the same “shallow”

executable
  Select Display output

from all processes in a
console view

  If Debugger tab has error,
select Debugger: SDM

  Click Run to submit the
application to the job
scheduler

Module 4 4-40

4-41

Job Monitoring

  Job initially
appears in
“Inactive Jobs”,
then in “Active
Jobs”, then
returns to
Inactive on
completion

  Can view output
or error by right
clicking on job,
selecting
appropriate
output

Module 4 4-41

4-42

Interactive Job Scheduler

  Right-click in Resource
Managers view and
select Add Resource
Manager

  Choose the PBS-
Generic-Interactive
Resource Manager
Type

  Select Next>

Module 4 4-42

4-43

Configure the Remote Location
  Choose Remote Tools for

Remote service provider
  Choose the remote

connection you made
previously

  Click Next>

Module 4 4-43

4-44

Configure the Monitor
Connection

Module 4 4-44

  Keep default Monitor
Connection (same as Control
Connection), click Next

4-45

Configure the Common Resource
Manager Parameters

Module 4 4-45

  Keep default name
  Can automatically start

Resource Manager (leave
unselected today)

  Click Finish

4-46

Starting the Resource Manager

  Right click on new
resource manager and
select Start resource
manager

  If everything is ok,
you should see the
resource manager
change to green

  If something goes
wrong, it will change
to red

Module 4 4-46

4-47

  Open the run configuration
dialog Run>Run
Configurations…

  Select Parallel Application
  Select the New

button

Create a Launch Configuration

Module 4 4-47

4-48

Complete the Resources Tab

  Enter a name for this
launch configuration, e.g.
“shallow-pbs-interactive

  In Resources tab, select
the PBS resource manager
you just created

  The MPI Command field
allows this job to be run
as an MPI job
  Choose mpirun

  Enter the resources
needed to run this job
  Use 4 gb memory, 4 cores

  Select the destination
queue – lincoln_debug

Module 4 4-48

4-49

Complete the Application Tab

  Select the Application
tab

  Choose the Application
program by clicking the
Browse button and
locating the executable on
the remote machine
  Use the same “shallow”

executable
  Select Display output

from all processes in a
console view

  If Debugger tab has error,
select Debugger: SDM

  Click Run to submit the
application to the job
scheduler

Module 4 4-49

Running the Interactive job

 Maximizing the
console, you can see
output from the job

 Use Run button to
re-run application
within the interactive
run

 Use Stop button to
end batch job

4-50 7/18/11Module 4

Module 5

Module 5: Parallel Debugging

 Objective
 Learn the basics of debugging parallel programs

 Contents
 Launching a debug session
 The Parallel Debug Perspective
 Controlling sets of processes
 Controlling individual processes
 Parallel Breakpoints
 Terminating processes

5-0

Module 5

Debugging an Application

  Debugging requires interactive access to the application
  Since PBS is for batch execution, we will use Open MPI to

provide interactive access to the machine (PBS will
support interactive execution in the future)

  First switch to the Parallel Runtime perspective if not
already there

5-1

Module 5

Start the Resource Manager

  If the Open_MPI Resource manager is not already
started (green icon), start it now:
  Right-click on the resource manager and select

Start Resource Manager from the menu

5-2

Module 5

Create a Debug Configuration

  A debug configuration is
essentially the same as a run
configuration (like we used
in modules 3 & 4)

  We will re-use the existing
configuration and add debug
information

  Use the drop-down next to
the debug button (bug icon)
instead of run button

  Select Debug
Configurations… to open
the Debug Configurations
dialog

5-3

Configure the Debugger Tab

  Select Debugger tab
  Select the shallow

configuration

  Make sure SDM is
selected in the
Debugger dropdown

  Check the debugger
path is correct
  Should be the path to

the sdm executable on
the remote system

  Debugger session
address should not
need to be changed

  Click on Debug to
launch the program

Module 5 5-4

Module 5

  Parallel Debug
view shows job
and processes
being debugged

  Debug view shows
threads and call
stack for individual
processes

  Source view
shows a current
line marker for all
processes

The Parallel Debug Perspective (1)

5-5

Module 5

The Parallel Debug Perspective (2)

  Breakpoints view
shows breakpoints
that have been set
(more on this later)

  Variables view
shows the current
values of variables
for the currently
selected process in
the Debug view

  Outline view (from
CDT) of source
code

5-6

Module 5

Stepping All Processes

  The buttons in the
Parallel Debug View
control groups of
processes

  Click on the Step Over
button

  Observe that all process
icons change to green,
then back to yellow

  Notice that the current
line marker has moved to
the next source line

5-7

Module 5

Stepping An Individual Process
  The buttons in the

Debug view are used
to control an
individual process, in
this case process 0

  Click the Step Over
button

  You will now see two
current line markers,
the first shows the
position of process 0,
the second shows the
positions of processes
1-3

5-8

Module 5

Process Sets (1)

  Traditional debuggers apply operations to a single
process

  Parallel debugging operations apply to a single process
or to arbitrary collections of processes

  A process set is a means of simultaneously referring to
one or more processes

5-9

Module 5

Process Sets (2)

  When a parallel debug session is first started, all
processes are placed in a set, called the Root set

  Sets are always associated with a single job
  A job can have any number of process sets
  A set can contain from 1 to the number of processes in

a job

5-10

Module 5

Operations On Process Sets

  Debug operations on the
Parallel Debug view
toolbar always apply to the
current set:
  Resume, suspend, stop,

step into, step over, step
return

  The current process set is
listed next to job name
along with number of
processes in the set

  The processes in process
set are visible in right hand
part of the view

Root set = all processes

5-11

Module 5

Create set Remove
from set

Delete
set

Change
current set

Managing Process Sets

  The remaining icons in the toolbar of the Parallel
Debug view allow you to create, modify, and delete
process sets, and to change the current process set

5-12

Module 5

Creating A New Process Set
  Select the processes

you want in the set by
clicking and dragging,
in this case, the last
three

  Click on the Create
Set button

  Enter a name for the
set, in this case
workers, and click OK

  You will see the view
change to display only
the selected processes

5-13

Module 5

Stepping Using New Process Set
  With the workers set

active, click the Step
Over button

  You will see only the
first current line
marker move

  Step a couple more
times

  You should see two line
markers, one for the
single master process,
and one for the 3
worker processes

5-14

Module 5

Process Registration

 Process set commands apply to groups of
processes

 For finer control and more detailed
information, a process can be registered and
isolated in the Debug view

 Registered processes, including their stack
traces and threads, appear in the Debug view

 Any number of processes can be registered,
and processes can be registered or
un-registered at any time

5-15

Module 5

Process Registration (2)
  By default, process 0 was

registered when the debug
session was launched

  Registered processes are
surrounded by a box and
shown in the Debug view

  The Debug view only shows
registered processes in the
current set

  Since the “workers” set
doesn’t include process 0, it
is no longer displayed in the
Debug view

5-16

Module 5

Registering A Process

  To register a process,
double-click its process
icon in the Parallel
Debug view or select a
number of processes and
click on the register
button

  To un-register a process,
double-click on the
process icon or select a
number of processes and
click on the unregister
button

Individual
(registered)
processes

Groups (sets)
of processes

5-17

Module 5

Current Line Marker

 The current line marker is used to show the
current location of suspended processes

 In traditional programs, there is a single
current line marker (the exception to this is
multi-threaded programs)

 In parallel programs, there is a current line
marker for every process

 The PTP debugger shows one current line
marker for every group of processes at the
same location

5-18

Module 5

Multiple processes marker

Registered process marker

Un-registered process marker

Colors And Markers

  The highlight color depends on
the processes suspended at
that line:
  Blue: All registered process(es)
  Orange: All unregistered process

(es)
  Green: Registered or unregistered

process with no source line (e.g.
suspended in a library routine)

  The marker depends on the
type of process stopped at that
location

  Hover over marker for more
details about the processes
suspend at that location

5-19

Module 5

  Apply only to processes in the particular set that is
active in the Parallel Debug view when the breakpoint
is created

  Breakpoints are colored depending on the active
process set and the set the breakpoint applies to:
 Green indicates the breakpoint set is the same

as the active set.
  Blue indicates some processes in the breakpoint set are

also in the active set (i.e. the process sets overlap)
  Yellow indicates the breakpoint set is different from the

active set (i.e. the process sets are disjoint)
  When the job completes, the breakpoints are

automatically removed

Breakpoints

5-20

Module 5

Creating A Breakpoint
  Select the process set that

the breakpoint should apply
to, in this case, the workers
set

  Double-click on the left edge
of an editor window, at the
line on which you want to set
the breakpoint, or right click
and use the Parallel
BreakpointToggle
Breakpoint context menu

  The breakpoint is displayed
on the marker bar

5-21

Module 5

Hitting the Breakpoint
  Switch back to the Root set

by clicking on the Change
Set button

  Click on the Resume button
in the Parallel Debug view

  In this example, the three
worker processes have hit the
breakpoint, as indicated by
the yellow process icons and
the current line marker

  Process 0 is still running as its
icon is green

  Processes 1-3 are suspended
on the breakpoint

5-22

Module 5

More On Stepping
  The Step buttons are only

enabled when all processes
in the active set are
suspended (yellow icon)

  In this case, process 0 is still
running

  Switch to the set of
suspended processes (the
workers set)

  You will now see the Step
buttons become enabled

5-23

Module 5

Breakpoint Information

 Hover over breakpoint icon
 Will show the sets this breakpoint applies to

 Select Breakpoints view
 Will show all breakpoints in all projects

5-24

 Use the menu in the breakpoints view to group
breakpoints by type

 Breakpoints sorted by breakpoint set (process
set)

Module 5

Breakpoints View

5-25

Module 5

  Apply to all processes and all jobs
  Used for gaining control at debugger startup
  To create a global breakpoint

  First make sure that no jobs are selected (click in white
part of jobs view if necessary)

 Double-click on the left edge of an editor window
 Note that if a job is selected, the breakpoint will apply to

the current set

Global Breakpoints

5-26

Module 5

Terminating A Debug Session

  Click on the Terminate
icon in the Parallel
Debug view to
terminate all processes
in the active set

  Make sure the Root set
is active if you want to
terminate all processes

  You can also use the
terminate icon in the
Debug view to
terminate the currently
selected process

5-27

Module 6: Fortran

 Objective
 Learn what Photran is and how it compares to CDT
 Learn how to create a Fortran MPI application
 Learn about refactoring support

 Contents
 Overview of Photran
 Module 3 redux (in Fortran)
 Differences between Photran and CDT
 Pointers to online documentation for Photran
 Refactoring support

Module 6 6-0

Ralph Johnson’s research group at UIUC used to meet at Pho-Tran…

…which became the name of their Fortran IDE.

Photran
•  http://www.eclipse.org/photran
•  Official Eclipse Foundation project;

part of the Parallel Tools Platform (PTP)

•  Supports Fortran 77, 90, 95, 2003, & 2008
•  Built on CDT; largely similar to it

•  Primary contributor: UIUC
•  Contrib’s from Intel, IBM, LANL, & others

Module 6 6-3

Fortran
Editor &
Outline

Module 6 6-4

Context-
Aware

Highlighting

Module 6 6-5

CVS
support

Module 6 6-6

Module 6 6-7

Debugging
(GDB GUI)

Module 6 6-8

Installing Photran

  You will need a Fortran compiler
(e.g., gfortran), make, and gdb to
compile & debug Fortran programs

  From the Help menu, choose
 Install New Software…

  Select the Indigo update site

 Under Programming Langs
Check Fortran Dev. Tools

  Click Next
  Finish installing:

  Next, Accept license, Finish
  Features and prerequisites

are downloaded and installed…
  Restart Eclipse when prompted

Module 6 6-9

http://wiki.eclipse.org/PTP/photran/documentation/photran7installation

Using Photran

 It’s just like using CDT...
 Similar New Project wizards
 Similar build procedure
 Similar launch/debug procedure

 ...but not exactly
 Remote development partially supported
 Configuring fixed vs. free form file extensions
 Different editor features
 Different advanced features

Module 6 6-10

Switch to C/C++ Perspective
 Only needed if

you’re not
already in the
perspective

 What Perspective
 am in in?
 See Title Bar

Fortran

Module 6 6-11

(same as for C/C++)

Creating a Fortran Application

Steps:
  Create a new Fortran project
  Edit source code
  Save and build

Module 6 6-12

(same as Creating a C/C++ Application)

New Fortran Project Wizard

Create a new MPI project
  FileNewFortran Project

(see prev. slide)
  Name the project

‘MyHelloProject’
  Under Project types, under

Makefile Project, select MPI
Hello World Fortran Project
and hit Next

  On Basic Settings
page, fill in information
for your new project
(Author name etc.)
and hit Finish

There are
“Managed Build”
projects for
Fortran too…

…but this is a
Makefile project,
where you
maintain the
Makefile

Module 6 6-13

(similar to New C/C++ Project Wizard)

Fortran Projects View

  Represents user’s data
  It is a set of user defined

resources
 Files
 Folders
 Projects

 Collections of files and
folders

 Plus meta-data
  Resources are visible in the

Fortran Projects View

Module 6 6-14

(similar to C/C++ Project Explorer view)

Editor and Outline View
  Double-click on

source file to
open Fortran
editor

  Outline view is
shown for file in
editor

Module 6 6-15

(similar to C/C++)

Build

  Your program should build when created.
  To rebuild, many ways include:

  Select project, Hit hammer icon in toolbar
  Select project, Project  Build Project
  Right mouse on project, Clean Project

6-16 Module 6

(same as C/C++)

Et Cetera
  Creating a launch configuration is identical

(Suggestion: Uncheck Stop on startup at main
in the Debugger tab)

Module 6 6-17

Et Cetera

 Debugging is identical

 Launching a parallel application is identical

 Debugging a parallel application is identical

Module 6 6-18

Diagnosing Common Problems

  Right-click on the project
in the Fortran Projects
view, and choose
Properties

  Expand Fortran
BuildSettings

  Switch to the Error
Parsers tab

  Are Photran’s error parsers
checked? If not, click
Check all

  Click OK and re-build

Building: Are compile errors
not shown in the Problems
view?

Module 6 6-19

(also true for C/C++)

  Right-click on the project in
the Fortran Projects view,
and choose Properties

  Expand Fortran
BuildSettings

  Switch to the Binary
Parsers tab

  Make sure the parser for
your platform is checked
 PE = Windows
 Elf = Linux
 Mach-O = Mac OS X

  Click OK

Launching: Is a binary not
listed when creating a launch
configuration?

Differences (1): MPI Project Wizard

  In the MPI Hello World C Project (local project),
the MPI compiler is set in the project settings…
(Local, managed build project: see Module 7, Advanced
Features)

  …but in the MPI Hello World Fortran Project,
the MPI compiler is set in a Makefile.

Module 6 6-20

Differences (2): Content Assist

  Content assist is disabled by default.
(So are Declaration View, Hover Tips, Fortran Search, &
refactorings.)
You must specifically enable it for your project.

  Right-click on the
project in the Fortran
Projects view, and
choose Properties

  Expand Fortran
Analysis/Refactoring

  Check Enable Fortran
analysis/refactoring

  Click OK
  Close and re-open any

Fortran editors
Module 6 6-21

Differences (3): Source Form
 Fortran files are either free form or fixed form;

some Fortran files are preprocessed (#define, #ifdef, etc.)

 Determined by filename extension
 Source form is set in the project properties

  Defaults:

 Fixed form: .f .fix .for .fpp .ftn .f77

 Free form: .f08 .f03 .f95 .f90 < unpreprocessed
 .F08 .F03 .F95 .F90 < preprocessed

 Many features will not work if filename extensions
are associated incorrectly
(Outline view, content assist, Fortran Search, refactorings,
Open Declaration, …)

Module 6 6-22

Differences (3): Source Form

  Right-click a project
in the Fortran
Projects view

  Click Properties

  Navigate the tree to
Fortran General
Source Form

  Select source form
for each filename
extension

  Click OK

Set free/fixed form associations in the project properties

Module 6 6-23

Differences (3): Source Form

  Navigate the tree
to General
Content Types

  Expand Text
Fortran Source
File

  Add custom
filename
extensions

Add new filename extensions in workspace preferences

Module 6 6-24

Differences (4): Remote Support

  Remote Fortran support is improving

  Synchronized remote projects

  Create Synchronized C/C++ Project, then
Convert to Fortran Project

  All features should work, except no support for
remote INCLUDE/#include files

  Fully remote projects

  Create Remote C/C++ Project, then
Convert to Fortran Project

  Do not enable analysis/refactoring

Module 6 6-25

For More Information

  Photran online documentation
linked from http://www.eclipse.org/photran

 Installation Guide

 User’s Guide
General introduction, basic features

 Advanced Features Guide
Features requiring analysis/refactoring to be enabled

Module 6 6-26

Refactoring

  Refactoring is the research
motivation for Photran @ Illinois
  Illinois is a leader in refactoring research

  “Refactoring” was coined in our group
(Opdyke & Johnson, 1990)

  We had the first dissertation…
(Opdyke, 1992)

  …and built the first refactoring tool…
(Roberts, Brant, & Johnson, 1997)

  …and first supported the C preprocessor
(Garrido, 2005)

  Photran’s agenda: refactorings for HPC,
language evolution, refactoring framework

  Photran 6.0: 16 refactorings
  Photran 7.0: 31 refactorings

(making changes to source code that don’t affect the behavior of the program)

Module 6 6-27

In Java (Murphy-Hill et al., ICSE 2008):

Rename Refactoring
 Changes the name of a variable, function, etc.,

including every use
(change is semantic, not textual, and can be workspace-wide)

 Only proceeds if the new name will be legal
(aware of scoping rules, namespaces, etc.)

  Select Fortran Perspective
 Open a source file
  Click in editor view on

declaration of a variable
  Select menu item

RefactorRename
 Or use context menu

  Enter new name

Module 6 6-28

(also available in C/C++)

  Moves statements into a new subroutine, replacing the
statements with a call to that subroutine

  Local variables are passed as arguments

Extract Procedure Refactoring

  Select a sequence of statements
  Select menu item

RefactorExtract Procedure…
 Or use context menu

  Enter new name

Module 6 6-29

(also available in C/C++ - “Extract Function”)

  Fortran does not require variable declarations
(by default, names starting with I-N are integer variables; others are reals)

  This adds an IMPLICIT NONE statement and adds explicit
variable declarations for all implicitly declared variables

Introduce IMPLICIT NONE Refactoring

  Introduce in a single file by
opening the file and selecting
RefactorIntroduce IMPLICIT
NONE…

  Introduce in multiple files by
selecting them in the Fortran
Projects view, right-clicking on
the selection, and choosing
RefactorIntroduce IMPLICIT
NONE…

Module 6 6-30

Module 7: Advanced Development

 Objective
 Become familiar with other tools that help

parallel application development

 Contents
 Parallel Language Development Tools: MPI, OpenMP, UPC

 Overview of UPC tools
 Performance Tuning and other external tools:

 PTP External Tools Framework (ETFw), TAU
 Parallel Performance Wizard (PPW)

 MPI Analysis: GEM (Graphical Explorer of MPI Programs)

Module 7 7-0

Eclipse UPC Features

Module 7 7-1

 CDT:
 Parser/Editor support
 Code templates
 IBM XLc (incl. xlUPC) – remote
 Berkeley UPC toolchain – local (see backup slides)

 PTP:
 Artifact identification; Hover/dynamic help assistance
 More Code templates
 Remote UPC parsing and builds with xlupc
 Parallel Performance Wizard integration with PTP

CDT - UPC Support

  Filetypes of “upc” will get UPC syntax high-
lighting, content assist, etc.

  Use Preferences to
change default for *.c
if you like
(we’ll show you how)

Module 7 7-2

UPC Content Assist, Hover Help

  In Editor, type
upc and hit control-
space
(once)

  A list of possible
completions is
provided.

  Choose with mouse
or cursor.

  Hover over
API

  Hyperlink too

Module 7 7-3

UPC templates - using

  In Editor, type
upc and hit control-space
(twice)

Module 7 7-4

UPC templates – viewing/adding

  Eclipse preferences: add
more! Or just see
what’s there
 C/C++ > Editor >

Templates

Module 7 7-5

Show UPC Artifacts

  Add some UPC api’s to your sample project
  Show UPC Artifacts – remote projects need CDT > 8.0

Module 7 7-6

Other UPC features

 UPC parser is remote-enabled
 Remote UPC projects can be developed efficiently

 Remote xlUPC toolchain enables remote build
of IBM xlUPC project
 Managed Build (user-friendly) way to specify and

manage complex build options without makefiles

Module 7 7-7

More Advanced Features: Demos

 ETFw – External Tools Framework and
TAU, Tuning and Analysis Utilities
 Suzanne Millstein, U. Oregon

 PPW – Parallel Performance Wizard
 No demo today)

 GEM – Graphical Explorer of MPI Programs
 Dynamic Formal Verification for MPI
 Alan Humphrey, U. Utah

Module 7 7-8

PTP/External Tools Framework
formerly “Performance Tools Framework”

Goal:
 Reduce the “eclipse plumbing”

necessary to integrate tools
 Provide integration for

instrumentation, measurement, and
analysis for a variety of performance
tools

  Dynamic Tool Definitions:
Workflows & UI

  Tools and tool workflows are
specified in an XML file

  Tools are selected and configured in
the launch configuration window

  Output is generated, managed and
analyzed as specified in the
workflow

Module 7 7-9

PTP TAU plug-ins
http://www.cs.uoregon.edu/research/tau

  TAU (Tuning and Analysis Utilities)
  First implementation of External Tools Framework (ETFw)
  Eclipse plug-ins wrap TAU functions, make them available

from Eclipse
  Compatible with Photran and CDT projects and with PTP

parallel application launching
  Other plug-ins launch Paraprof from Eclipse too

Module 7 7-10

TAU Integration with PTP

 TAU: Tuning and
Analysis Utilities
 Performance data

collection and analysis
for HPC codes

 Numerous features
 Command line interface

 The TAU Workflow:
 Instrumentation
 Execution
 Analysis

Module 7 7-11

Parallel Performance Wizard (PPW)
  Full-featured performance tool for

PGAS programming models
  Currently supports UPC, SHMEM, and

MPI
  Extensible to support other models
  PGAS support by way of Global Address

Space Performance (GASP) interface
(http://gasp.hcs.ufl.edu)

  PPW features:
  Easy-to-use scripts for backend data

collection
  User-friendly GUI with familiar

visualizations
  Advanced automatic analysis support

  More information and free
download: http://ppw.hcs.ufl.edu

Module 7 7-12

  We implement the ETFw to make
PPW’s capabilities available within
Eclipse
  Compile with instrumentation,

parallel launch with PPW
  Generates performance data file in

workspace, PPW GUI launched

  PPW is often used for UPC
application analysis
  ETFw extended to support UPC
  Many UPC features in PTP

  For more information:

 http://ppw.hcs.ufl.edu
 ppw@hcs.ufl.edu

PPW Integration via ETFw

Module 7 7-13

GEM
Graphical Explorer of MPI Programs

 Contributed to PTP by University of Utah in 2009
  Available with PTP since v3.0

 Dynamic verification for MPI C/C++ that detects:
 Deadlocks
 MPI object leaks
  Functionally irrelevant barriers
  Local assertion violations

 Offers rigorous coverage guarantees
  Complete nondeterministic coverage for MPI
  Communication / synchronization behaviors
 Determines relevant interleavings, replaying as necessary

Module 7 7-14

GEM - Overview

(Image courtesy of Steve Parker, U of Utah)

7-15

  Front-end for In-situ Partial Order
(ISP), Developed at U. Utah

  Introduces “push-button”
verification into the MPI
development cycle for PTP

  Automatically instruments and runs
user code, displaying post
verification results

  Variety of views & tools to facilitate
debugging and code understanding

GEM – Views & Tools
 Analyzer View

 Highlights bugs, and facilitates
 post-verification review / debugging

Module 7 7-16

Browser View
Groups & helps quickly localizes

MPI problems. Maps errors to
source code line in editor

GEM – Views & Tools (cont.)

17

 Happens-Before Viewer
Shows required orderings and communication matches

(currently an external tool)

Module 7 7-18

Using GEM – ISP Installation

 ISP itself must be installed prior to using GEM

 Download ISP at http://www.cs.utah.edu/fv/ISP

 Make sure libtool, automake and autoconf are installed.

 Just untar isp-0.2.0.tar.gz into a tmp directory:
 Configure and install

 ./configure
 make
 make install

  This installs binaries and necessary scripts

Using GEM
 Create local or remote MPI C/C++ project

 Make sure your project builds correctly
 Managed build and Makefile projects supported

 Set preferences via GEM Preference Pages
 From the trident icon or context

menus user can:

 Formally Verifying MPI Program
 Launches verification engine ISP
 Generates log file for post-

verification analysis
 Opens relevant GEM views

Module 7 7-19

GEM Analyzer View
 Reports program errors, and runtime statistics

 Debug-style source code stepping of interleavings
 Point-to-point / Collective Operation matches
 Internal Issue Order / Program Order views
 Rank Lock feature – focus on a particular process

 Also controls:
 Call Browser
 Happens Before Viewer launch
  Re-launching of GEM

Module 7 7-20

GEM Browser View

Module 7 7-21

 Tabbed browsing for each type of MPI error/warning

 Each error/warning mapped to offending line of
source code in Eclipse editor

 One click to visit the Eclipse editor, to examine:
 Calls involved in deadlock
 Irrelevant barriers
 MPI Object Leaks sites
 MPI type mismatches
  Local Assertion Violations

GEM – Help Plugin
Extensive how-to sections, graphical aids and

trouble shooting section

Module 7 7-22

GEM/ISP Success Stories
 Umpire Tests

  http://www.cs.utah.edu/fv/ISP-Tests
 Documents bugs missed by tests, caught by ISP

 MADRE (EuroPVM/MPI 2007)
  Previously documented deadlock detected

 N-Body Simulation Code
  Previously unknown resource leak caught during
 EuroPVM/MPI 2009 tutorial !

 Large Case Studies
  ParMETIS, MPI-BLAST, IRS (Sequoia Benchmark), and a few

SPEC-MPI benchmarks could be handled

 Full Tutorial including LiveDVD ISO available
  Visit http://www.cs.utah.edu/fv/GEM

Module 7 7-23

Module 7 7-24

GEM Future Plans

 Incorporation of HB Viewer into GEM as a new view

 Add Pthread support to visualize Pthread calls made
from within MPI space

GEM Future Plans
 GEM will serve as a front-end for other tools

 Integration of Distributed Analyzer of MPI Programs
(DAMPI), developed at University of Utah
 ISP scales to 10s of processes
 DAMPI scales to 1000s of processes (C/C++/Fortran)
 Decentralized scheduler uses Lamport Clocks

Module 7 7-25

Use ISP at small scale,
then launch DAMPI at

scale on a cluster 	

PTP Adv. Development: Summary

 A diversity of other tools aid parallel development
 Parallel Language Development Tools:

MPI, OpenMP, UPC, LAPI, etc.
 External Tools Framework (ETFw) eases integration of

existing (command-line, etc.) tools
 TAU Performance Tuning uses ETFw
 PPW (Parallel Perf. Wizard) uses ETFw for UPC analysis
 Feedback view maps tool findings with source code

 MPI Analysis: GEM

 A diversity of contributors too!
 We welcome other contributions. Let us help!

Module 7 7-26

Module 7 7-27

Backup

 Not covered in today’s tutorial,
but included for reference

 Creating a local MPI project, and using the wizards
 MPI Assistance tools
 MPI Barrier analysis on a local project

 OpenMP tools
 UPC tools installation and local projects
 External Tools Framework (ETFw) details, overview

of integrating other tools into PTP
 ETFw Feedback view incl. sample exercise

Module 7 7-28

Parallel Lang. Dev. Tools
 PLDT Features

 Analysis of C and C++ code to determine the
location of MPI, OpenMP, and UPC Artifacts

 Content assist via ctrl+space (“completion”)
 Hover help
 Reference information about the API calls via Dynamic

Help
 New project wizard automatically configures managed

build projects for MPI & OpenMP
 OpenMP problems view of common errors
 OpenMP “show #pragma region” , “show concurrency”
 MPI Barrier analysis - detects potential deadlocks

Some MPI features were covered in Module 4
Note: Some PLDT features don’t work on remote (RDT) projects

Module 7 7-29

Added by PLDT (Parallel Lang. Dev. Tools)
feature of PTP

 MPI Context sensitive help
 MPI artifact locations
 MPI barrier analysis
 MPI templates

 For this part, we will use the local MPI New
Project Wizard and the “MPI Hello World”
project

MPI Assistance Tools

Module 7 7-30

Creating Local Project

 The next slide shows you how to create a local
MPI project.

 If you do not have MPI on your local machine,
you can’t build or run.

 But you should be able to demonstrate the MPI
features in PTP’s PLDT regardless.

 Several PLDT MPI features pertain to developing
code – just using the local editor, etc.

 Most PLDT features do work on remote projects.

Module 7 7-31

Create local MPI Project

Using a Managed
Build Project – for a
quick sample local
MPI project
 File > New > C
Project
 Give Project a
name, e.g. HelloMPI
 Confirm Toolchain
 Select MPI Hello
World C Project

Module 7 7-32

Set MPI Preferences
  When creating a local

MPI project with the
wizard, you need to set
MPI Preferences (once)

  This assures the include
paths, etc. will be set
for new MPI projects –
for building, and for
Eclipse assistance
features for MPI.

  Select Yes to set the MPI
preferences.���

Module 7 7-33

Note: if you do not have MPI on your local
machine, you can use just an MPI header
file (mpi.h) so you play with the PTP MPI
development features without building or
running on your local machine.	

No
MPI?

Set MPI Preferences (2)

  On the MPI
Preferences page, add
a new MPI include
path.

  New … and point to
the directory
containing your MPI
header file (mpi.h)

  Select OK
  Back on New Project

Wizard page, select
Next> and fill in
Author name, etc.

Module 7 7-34

Review MPI Project Settings

  On the next wizard page,
review the MPI project
settings based on the
information you have
provided.

  Make changes if you wish.
  The defaults should be fine.
  Click Finish.
  You will be prompted to

switch perspectives

Module 7 7-35

Create MPI Project

Recap:
  File > New > C Project
  Give Project a name, e.g.

HelloMPI
  Select Toolchain
  Select MPI Hello World C

Project
  Set MPI Prefs, if first time
  Click Finish

  Note: if it doesn’t build on
your machine, you can still
continue with this exercise

Module 7
7-36

Project Properties:
Managed Build Project

 Right-click on project in Project Explorer
view and select Properties

 Project Properties for Managed Build project
 Compiler, Linker, etc. settings set automatically

without a Makefile

Module 7 7-37

Show MPI Artifacts

  Markers indicate the
location of artifacts in
editor

  In MPI Artifact View
sort by any column
(click on col. heading)

  Navigate to source code
line by double-clicking
on the artifact

  Run the analysis on
another file and its
markers will be added to
the view

  Remove markers via

Module 7 7-38

  Select source file in Project Explorer;
Select Show MPI Artifacts
in PLDT menu

MPI Barrier Analysis
Verify barrier
synchronization in C/
MPI programs

Interprocedural static
analysis outputs:

 For verified programs,
lists barrier statements
that synchronize
together (match)
  For synchronization
errors, reports counter
example that illustrates
and explains the error

Module 7 7-39

Local
files only

MPI Barrier Analysis – Try it

Resulting statement

Module 7 7-40

Add some barriers:
  Inside the sample if

(rank…) add a barrier:
  Use Content Assist to

help you type
  Type: MPI_ and press

Ctrl-space. See
completion alternatives.
Keep typing until you see
MPI_Barrier and hit enter.

  For args, start typing
MPI_Comm_ etc. and it
will also complete
MPI_COMM_WORLD

  Add the same barrier
statement at the end of
the else as well.

MPI Barrier Analysis – Try it (2)

Module 7 7-41

Run the Analysis:
  In the Project Explorer,

Select the source file (or
directory, or project) of
file(s) to analyze

  Select the MPI Barrier
Analysis action in the
menu���

MPI Barrier Analysis - views

MPI Barriers view

Simply lists the barriers

Like MPI Artifacts view,
double-click to navigate
to source code line (all
3 views)

Barrier Matches view
Groups barriers that
match together in a
barrier set – all
processes must go
through a barrier in the
set to prevent a
deadlock

Barrier Errors view

If there are errors, a
counter-example
shows paths with
mismatched number
of barriers

Module 7 7-42

MPI Templates

 Eclipse preferences: add more!
 C/C++ > Editor > Templates

 Extend to other common patterns

Module 7 7-43

  Allows quick entry of
common patterns in MPI
programming

  Example: MPI send-
receive

  Enter: mpisr <ctrl-
space>

  Expands to the code
shown at right

  Highlighted variable
names can all be
changed at once

  Type mpi <ctrl-space>
<ctrl-space> to see all
templates

OpenMP Managed Build
Project

  This will need OpenMP
preferences (e.g. include file
location) set up as well

  Create a new OpenMP project
  FileNewC Project
 Name the project e.g.

‘MyOpenMPproject’
  Select Toolchain
  Select OpenMP Hello

World C Project
  Select Next, then fill in

other info like MPI project

Module 7 7-44

Local
files only

Setting OpenMP Special
Build Options

  OpenMP typically requires
special compiler options.
 Open the project

properties
 Expand C/C++ Build
 Select Settings
 Select C Compiler

 In Miscellaneous,
add option(s).
-fopenmp

  Click OK; Project should
attempt to build

Module 7 7-45

Show OpenMP Artifacts

  Select source file,
folder, or project

  Run analysis

  See artifacts in
OpenMP Artifact
view

Module 7 7-46

Show Pragma Region

  Run OpenMP
analysis

  Right click on
pragma in
artifact view

  Select Show
pragma region

  See highlighted region in C editor

Module 7 7-47

UPC
 

Module 7 7-48

UPC Features Installation
 If you installed PTP PLDT UPC feature, you should

have CDT UPC feature too

  See Also:
http://wiki.eclipse.org/PTP/other_tools_setup#Using_UPC_features

  You can also install UPC features from the CDT-specific update site
  Enable it in update manager
 Help, Install New Software, Click available Software Sites link
  Check the CDT site:

http://download.eclipse.org/tools/cdt/releases/helios
  Click OK to return to Install dialog
  In Work with: select the CDT site you enabled
  Check UPC features

  Finish install
and restart

Module 7 7-49

BUPC toolchain
only on CDT site

UPC syntax in .c files

 UPC syntax is
recognized by the
parser in *.upc
files

 Copy helloUPC.upc
to hello.c to see
the difference

Module 7 7-50

Keywords as
well as new
syntax are
recognized

Highlight color

No Highlight color

UPC syntax in .c files (2)

 To enable UPC syntax in *.c files, we will
change the language mappings

 Preferences, C/C++, Language Mappings
 Click the Add… button to add a Language

mapping.

Module 7 7-51

 For Content Type,
C Source File

 For Language,
select UPC

 Click OK, OK

UPC syntax in .c files (3)

 Now UPC syntax
is recognized
in both types
of files

 You may need
to close and
re-open a file
to see the change.

 Note: in Project Properties, you can do this
for just individual projects.

Module 7 7-52

Highlight color

Highlight color

Berkeley UPC toolchain

 Local projects only
 File > New >

C project
 Hello World

UPC project
 Select toolchain

(if you don’t have
the toolchain, it just
won’t build.)

 Next, Next, Finish

Module 7 7-53

BUPC toolchain

 Bring up
Project
Properties to
see details
of BUPC
toolchain:

 Project,
right mouse,
Properties

Module 7 7-54

Hello World UPC project

 Hello (Berkeley) World UPC project
 Note UPC syntax highlighting
 Toolchain has been modified for UPC

Module 7 7-55

UPC on abe.ncsa.uiuc.edu

  BUPC is located at:
  /usr/apps/mpi/upc/berkeley_upc

  To run from cmd line on abe:
  setenv PATH /usr/apps/mpi/upc/berkeley_upc/bin:${PATH}

TO RUN FROM PTP/ECLIPSE:
  In your home dir on abe: use ‘helloUPC’ to make a remote proj
  Set Remote Paths and Symbols to include:

  /usr/apps/mpi/upc/berkeley_upc/opt/include/upcr_preinclude
  To run: use a Generic Remote Launch for Resource Manager
  Run config:

  Application program: /usr/apps/mpi/upc/berkeley_upc/bin/
upcrun

  Arguments tab: -q -n 4 ~/helloUPC/helloUPC

Module 7 7-56

External Tools Framework
ETFw Motivation

 There are numerous command-line oriented
development tools employed in HPC

 These can be complicated or time consuming
to use

 IDE integration for individual development
tools is slow and inconsistent

 We want all our development tools in one
place with one interface

 We want our development tools to work
together

Module 7 7-57

ETFw: Development Tool
Workflows

 Variations on ‘Compile, Execute, Analyze-
Results’ are common to most software
development

 These steps may be tedious and time
consuming, especially over multiple iterations

 By defining both tool interfaces and behavior
in an XML document these steps can be
simplified and automated

Module 7 7-58

ETFw: The Build Phase

 Set compilers and arguments for each language
 Define UI for compiler/compiler-wrapper

configuration

Module 7 7-59

ETFw: The Execution Phase

 Specify composed execution tools such as
Perfsuite or Valgrind

 Set launch environment variables
 Define variables and tool options in XML or

provide a UI in the IDE
 Integrates with PTP parallel launch

environment

Module 7 7-60

ETFw: The Analysis/Post-
Processing Phase

 Sequentially run
tools on program
output

 Launch external
visualization tools

Module 7 7-61

ETFw: XML-Defined UI
Components

 Each pane constructs a set of options
sent to a tool or a set of environment
variables

 Numerous options for converting a
command line interface into an
intelligent GUI without Eclipse coding
Module 7 7-62

ETFw: Advanced Components

 Extension points
allow integration with
UIs and workflow
behavior too complex
to define in XML

 Logical and iterative
workflows for
successive executions
and parametric
studies

Module 7 7-63

ETFw: Using Workflows

 New workflows are
added to the ETFw
launch configuration
system

 Multiple workflow
configurations can be
defined and saved for
different use cases

 XML Workflow
definitions can be saved
and reused in different
environments

Module 7 7-64

ETFw: General Purpose Workflow

 Automated
 Generalized
 Quick performance

analysis and other
development tool
integration

 Exposes tool
capabilities to the user

Module 7 7-65

ETFw: Continuing Development

Plans:
 Integration with PTP Remote Development

Tools
 Additional options for GUI definition
 Generalization of TAU specific features such as

hardware counter selection and performance
data storage

 Contact: Wyatt Spear

Module 7 7-66

  Many existing tools provide
information that can be mapped to
source code lines
  Compiler errors, warnings,

suggestions
  Performance tool findings

  ETFw feedback view provided to
aid construction of these views
  Currently geared toward data

provided by tools in XML files
  Original ETFw facilities aid the

CALL of external tools from PTP
  Feedback view aids the

exposition of results to the
user

ETFw Feedback view

Module 7 7-67

Examples:
  Compiler optimization

report
  Performance tool data
  Refactoring tool uses

“advice” from external files

Feedback Sample

Module 7 7-68

 Download a sample implementation of the
feedback view:

 Complete instructions here:
http://wiki.eclipse.org/PTP/ETFw/feedback

 And on following slide…

Feedback Sample – (1) Install

Module 7 7-69

 Download the plugin jar file
  http://download.eclipse.org/tools/ptp/misc/feedback/

org.eclipse.ptp.etfw.feedback.sample_1.0.0.201010280927.jar

 Save it in your eclipse/dropins directory
 This is a “quick and dirty” type of installation
 Eclipse knows to look here when it starts, and it

installs whatever it finds here

 Then restart eclipse
  You should see the feedback icon

Feedback Sample – (2) data files

Module 7 7-70

 You have the Feedback sample plug-in installed
 Now you need some sample files for it to process

 sample.c and sample.xml
 They are hidden in the plug-in!
 Let’s take it apart to find them
 Unzip the jar file; they are in the data/ directory

 Alternate instructions on the wiki page
 Put them in a (local) eclipse project

Feedback Sample – (3) Try it

Module 7 7-71

 You have the Feedback sample plug-in installed
 You have an xml file that it can parse, and the

source file that it refers to.

1.  Select xml file

2.  Click feedback button
3.  See Sample Feedback

view
4.  Double-click in view

to navigate to source
code lines

END

Module 7 7-72

Module 8: Other Tools and
Wrap-up

 Objective
 How to find more information on PTP
 Learn about other tools related to PTP
 See PTP upcoming features

 Contents
 Links to other tools, including performance tools
 Planned features for new versions of PTP
 Additional documentation
 How to get involved

Module 8 8-0

NCSA
HPC Workbench

  Tools for NCSA Blue Waters
  http://www.ncsa.illinois.edu/BlueWaters/
  Sustained Petaflop system

  Based on Eclipse and PTP
  Includes some related tools

 Performance tools
 Scalable debugger
 Workflow tools (https://wiki.ncsa.uiuc.edu/

display/MRDPUB/MRD+Public+Space+Home
+Page)

  Part of the enhanced computational environment
described at:
 http://www.ncsa.illinois.edu/BlueWaters/ece.html

Module 8 8-1

NCSA HPC Workbench Coding &
Analysis

(CDT, PLDT,
Photran)

Scalable Debugger

PTP
Launching &
Monitoring

Performance
Tuning

(HPC toolkit,
HPCS toolkit,

RENCI, …)

Workflow

Module 8 8-2

Planned PTP Future Work

 Scalability improvements
  UI to support 1M processes
  Optimized communication protocol
  Very large application support

 Resource Managers
  More implementations of configurable resource managers

 Synchronized project improvements
  Conversion wizard
  Resolving merge conflicts

 Enhancements to the debugger
  Stability enhancements
  Transition to Scalable Communication Infrastructure (SCI)

Module 8 8-3

Useful Eclipse Tools

  Linux Tools (autotools, valgrind, Oprofile, Gprof)
  http://eclipse.org/linuxtools

  Python
  http://pydev.org

  Ruby
  http://www.aptana.com/products/radrails

  Perl
  http://www.epic-ide.org

  Git
  http://www.eclipse.org/egit

  VI bindings
  Vrapper (open source) - http://vrapper.sourceforge.net
  viPlugin (commercial) - http://www.viplugin.com

Module 8 8-4

Online Information

  Information about PTP
 Main web site for downloads, documentation, etc.

 http://eclipse.org/ptp
 Developers’ (and users) wiki for designs, planning,

meetings, etc.
 http://wiki.eclipse.org/PTP

  Articles and other documents
 http://wiki.eclipse.org/PTP/articles

  Information about Photran
 Main web site for downloads, documentation, etc.

 http://eclipse.org/photran
  User’s manuals

 http://wiki.eclipse.org/PTP/photran/documentation

Module 8 8-5

Mailing Lists

  PTP Mailing lists
 Major announcements (new releases, etc.) - low volume

 http://dev.eclipse.org/mailman/listinfo/ptp-announce

  User discussion and queries - medium volume
 http://dev.eclipse.org/mailman/listinfo/ptp-user

 Developer discussions - high volume
 http://dev.eclipse.org/mailman/listinfo/ptp-dev

  Photran Mailing lists
  User discussion and queries

  http://dev.eclipse.org/mailman/listinfo/photran

 Developer discussions –
  http://dev.eclipse.org/mailman/listinfo/photran-dev

Module 8 8-6

Getting Involved

 See http://eclipse.org/ptp
 Read the developer documentation on the wiki
 Join the mailing lists
 Attend the monthly developer meetings

 Teleconference Monthly
 Each second Tuesday, 1:00 pm ET
 Details on the PTP wiki

 Attend the montly user meetings
 Teleconference Monthly
 Each 4th Wednesday, 2:00 pm ET

PTP will only succeed with your participation!

Module 8 8-7

Thanks for attending
We hope you found it useful	

PTP Tutorial Feedback

 Please complete feedback form
 Your feedback is valuable!

Module 8 8-8

	ptp-00-tg11.ppt
	ptp-01-intro.ppt
	ptp-03-c.ppt
	ptp-04-mpi.ppt
	ptp-05-debug.ppt
	ptp-06-fortran.ppt
	ptp-07-advFeat.ppt
	ptp-08-wrapup.ppt

