Gradle User Manual
Version 6.7.1

Version 6.7.1

Table of Contents

About Gradle
What is Gradle?
Getting Started
Getting Started
Installing Gradle
Troubleshooting builds
Compatibility Matrix
Upgrading and Migrating
Upgrading your build from Gradle 6.x to the latest
Upgrading your build from Gradle 5.x to 6.0
Upgrading your build from Gradle 4.x to 5.0
Migrating Builds From Apache Maven
Migrating Builds From Apache Ant
Running Gradle Builds
Build Environment
The Gradle Daemon
Initialization Scripts
Executing Multi-Project Builds
Build Cache
Authoring Gradle Builds
Build Script Basics
Authoring Tasks
Writing Build Scripts
Working With Files
Using Gradle Plugins
Build Lifecycle
Logging
Multi-Project Builds in Gradle
Sharing Build Logic between Subprojects
Fine Tuning the Project Layout
Declaring Dependencies between Subprojects
Configuration time and execution time
Organizing Gradle Projects
Best practices for authoring maintainable builds
Lazy Configuration
Testing Build Logic with TestKit
Using Ant from Gradle
Dependency Management

O O O ==

11

17

18

18

26

45

71

91
110
110
119
127
135
140
156
156
175
245
260
319
339
351
359
363
364
366
373
375
382
392
421
442
460

Learning the Basics

Declaring Versions

Controlling Transitive Dependencies

Producing and Consuming Variants of Libraries

Working in a Multi-repo Environment

Publishing Libraries
Java & Other JVM Projects

Building Java & JVM projects

Testing in Java & JVM projects

Managing Dependencies of JVM Projects
C++ & Other Native Projects

Building C++ projects

Testing in C++ projects

Building Swift projects

Testing in Swift projects
Native Projects using the Software Model

Building native software

Software model concepts

Rule based model configuration

Implementing model rules in a plugin

Extending the software model
Extending Gradle

Developing Custom Gradle Task Types

Developing Custom Gradle Plugins

Developing Custom Gradle Types

Gradle Plugin Development Plugin
Reference

A Groovy Build Script Primer

Gradle Kotlin DSL Primer

Gradle Plugin Reference

Command-Line Interface

Gradle & Third-party Tools

The Gradle Wrapper

The Directories and Files Gradle Uses
Plugins

The ANTLR Plugin

The Application Plugin

The Base Plugin

Build Init Plugin

The Checkstyle Plugin

The CodeNarc Plugin

460
563
594
664
733
741
770
770
797
830
835
835
845
846
855
863
863
902
902
925
925
937
937
968
988
999
1002
1002
1007
1040
1042
1058
1062
1071
1074
1074
1077
1085
1087
1094
1097

The Distribution Plugin 1099

The Ear Plugin 1105
The Eclipse Plugins 1110
The Groovy Plugin 1118
The IDEA Plugin 1130
Ivy Publish Plugin 1137
The JaCoCo Plugin 1149
The Java Plugin 1159
The Java Library Plugin 1179
The Java Library Distribution Plugin 1193
The Java Platform Plugin 1195
Maven Publish Plugin 1202
Maven Plugin 1218
The PMD Plugin 1232
The Scala Plugin 1234
The Signing Plugin 1246
The War Plugin 1257
License Information 1262
License Information 1263
Gradle Documentation 1263

Gradle Build Scan Plugin 1263

About Gradle

What is Gradle?

Overview

Gradle is an open-source build automation tool that is designed to be flexible enough to build
almost any type of software. The following is a high-level overview of some of its most important
features:

High performance

Gradle avoids unnecessary work by only running the tasks that need to run because their inputs
or outputs have changed. You can also use a build cache to enable the reuse of task outputs from
previous runs or even from a different machine (with a shared build cache).

There are many other optimizations that Gradle implements and the development team
continually work to improve Gradle’s performance.

JVM foundation

Gradle runs on the JVM and you must have a Java Development Kit (JDK) installed to use it. This
is a bonus for users familiar with the Java platform as you can use the standard Java APIs in
your build logic, such as custom task types and plugins. It also makes it easy to run Gradle on
different platforms.

Note that Gradle isn’t limited to building just JVM projects, and it even comes packaged with
support for building native projects.

Conventions

Gradle takes a leaf out of Maven’s book and makes common types of projects — such as Java
projects — easy to build by implementing conventions. Apply the appropriate plugins and you
can easily end up with slim build scripts for many projects. But these conventions don’t limit
you: Gradle allows you to override them, add your own tasks, and make many other
customizations to your convention-based builds.

Extensibility

You can readily extend Gradle to provide your own task types or even build model. See the
Android build support for an example of this: it adds many new build concepts such as flavors
and build types.

IDE support

Several major IDEs allow you to import Gradle builds and interact with them: Android Studio,
Intelli] IDEA, Eclipse, and NetBeans. Gradle also has support for generating the solution files
required to load a project into Visual Studio.

Insight

Build scans provide extensive information about a build run that you can use to identify build
issues. They are particularly good at helping you to identify problems with a build’s

https://en.wikipedia.org/wiki/Build_automation
https://scans.gradle.com/

performance. You can also share build scans with others, which is particularly useful if you need
to ask for advice in fixing an issue with the build.

Five things you need to know about Gradle

Gradle is a flexible and powerful build tool that can easily feel intimidating when you first start.
However, understanding the following core principles will make Gradle much more approachable
and you will become adept with the tool before you know it.

1. Gradle is a general-purpose build tool

Gradle allows you to build any software, because it makes few assumptions about what you’re
trying to build or how it should be done. The most notable restriction is that dependency
management currently only supports Maven- and Ivy-compatible repositories and the filesystem.

This doesn’t mean you have to do a lot of work to create a build. Gradle makes it easy to build
common types of project — say Java libraries — by adding a layer of conventions and prebuilt
functionality through plugins. You can even create and publish custom plugins to encapsulate your
own conventions and build functionality.

2. The core model is based on tasks

Gradle models its builds as Directed Acyclic Graphs (DAGs) of tasks (units of work). What this
means is that a build essentially configures a set of tasks and wires them together — based on their
dependencies —to create that DAG. Once the task graph has been created, Gradle determines
which tasks need to be run in which order and then proceeds to execute them.

This diagram shows two example task graphs, one abstract and the other concrete, with the
dependencies between the tasks represented as arrows:

Partial task graph for a
standard Java build

[compiledava] [processResources]

[Task D J (Task E J classes

Generic task graph

Depends on

assemble

Figure 1. Two examples of Gradle task graphs

Almost any build process can be modeled as a graph of tasks in this way, which is one of the
reasons why Gradle is so flexible. And that task graph can be defined by both plugins and your own
build scripts, with tasks linked together via the task dependency mechanism.

Tasks themselves consist of:

» Actions — pieces of work that do something, like copy files or compile source
* Inputs — values, files and directories that the actions use or operate on

* Outputs — files and directories that the actions modify or generate

In fact, all of the above are optional depending on what the task needs to do. Some tasks — such as
the standard lifecycle tasks — don’t even have any actions. They simply aggregate multiple tasks
together as a convenience.

You choose which task to run. Save time by specifying the task that does what you
need, but no more than that. If you just want to run the unit tests, choose the task
that does that — typically test. If you want to package an application, most builds
have an assemble task for that.

NOTE

One last thing: Gradle’s incremental build support is robust and reliable, so keep your builds
running fast by avoiding the clean task unless you actually do want to perform a clean.

3. Gradle has several fixed build phases

It’s important to understand that Gradle evaluates and executes build scripts in three phases:
1. Initialization
Sets up the environment for the build and determine which projects will take part in it.
2. Configuration

Constructs and configures the task graph for the build and then determines which tasks need to
run and in which order, based on the task the user wants to run.

3. Execution

Runs the tasks selected at the end of the configuration phase.

These phases form Gradle’s Build Lifecycle.

Comparison to Apache Maven terminology

Gradle’s build phases are not like Maven’s phases. Maven uses its phases to divide
NOTE the build execution into multiple stages. They serve a similar role to Gradle’s task
graph, although less flexibly.

Maven’s concept of a build lifecycle is loosely similar to Gradle’s lifecycle tasks.

Well-designed build scripts consist mostly of declarative configuration rather than imperative logic.

That configuration is understandably evaluated during the configuration phase. Even so, many
such builds also have task actions — for example via dolLast {} and doFirst {} blocks — which are
evaluated during the execution phase. This is important because code evaluated during the
configuration phase won’t see changes that happen during the execution phase.

Another important aspect of the configuration phase is that everything involved in it is evaluated
every time the build runs. That is why it’s best practice to avoid expensive work during the
configuration phase. Build scans can help you identify such hotspots, among other things.

4. Gradle is extensible in more ways than one

It would be great if you could build your project using only the build logic bundled with Gradle, but
that’s rarely possible. Most builds have some special requirements that mean you need to add
custom build logic.

Gradle provides several mechanisms that allow you to extend it, such as:
* Custom task types.

When you want the build to do some work that an existing task can’t do, you can simply write
your own task type. It’s typically best to put the source file for a custom task type in the buildSrc
directory or in a packaged plugin. Then you can use the custom task type just like any of the
Gradle-provided ones.

e Custom task actions.

You can attach custom build logic that executes before or after a task via the Task.doFirst() and
Task.doLast() methods.

» Extra properties on projects and tasks.

These allows you to add your own properties to a project or task that you can then use from
your own custom actions or any other build logic. Extra properties can even be applied to tasks
that aren’t explicitly created by you, such as those created by Gradle’s core plugins.

» Custom conventions.

Conventions are a powerful way to simplify builds so that users can understand and use them
more easily. This can be seen with builds that use standard project structures and naming
conventions, such as Java builds. You can write your own plugins that provide conventions —
they just need to configure default values for the relevant aspects of a build.

¢ A custom model.

Gradle allows you to introduce new concepts into a build beyond tasks, files and dependency
configurations. You can see this with most language plugins, which add the concept of source
sets to a build. Appropriate modeling of a build process can greatly improve a build’s ease of use
and its efficiency.

https://scans.gradle.com/
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
https://guides.gradle.org/implementing-gradle-plugins/#modeling_dsl_like_apis

5. Build scripts operate against an API

It’s easy to view Gradle’s build scripts as executable code, because that’s what they are. But that’s an
implementation detail: well-designed build scripts describe what steps are needed to build the
software, not how those steps should do the work. That’s a job for custom task types and plugins.

There is a common misconception that Gradle’s power and flexibility come from the
fact that its build scripts are code. This couldn’t be further from the truth. It’s the

NOTE underlying model and API that provide the power. As we recommend in our best
practices, you should avoid putting much, if any, imperative logic in your build
scripts.

Yet there is one area in which it is useful to view a build script as executable code: in understanding
how the syntax of the build script maps to Gradle’s API. The API documentation — formed of the
Groovy DSL Reference and the Javadocs — lists methods and properties, and refers to closures and
actions. What do these mean within the context of a build script? Check out the Groovy Build Script
Primer to learn the answer to that question so that you can make effective use of the API
documentation.

As Gradle runs on the JVM, build scripts can also use the standard Java API. Groovy
NOTE build scripts can additionally use the Groovy APIs, while Kotlin build scripts can use
the Kotlin ones.

https://docs.gradle.org/6.7.1/dsl/
https://docs.gradle.org/6.7.1/javadoc/
https://docs.oracle.com/javase/8/docs/api

Getting Started

Getting Started

Everyone has to start somewhere and if you’re new to Gradle, this is where to begin.

Before you start

In order to use Gradle effectively, you need to know what it is and understand some of its
fundamental concepts. So before you start using Gradle in earnest, we highly recommend you read
What is Gradle?.

Even if you’re experienced with using Gradle, we suggest you read the section 5 things you need to
know about Gradle as it clears up some common misconceptions.

Installation

If all you want to do is run an existing Gradle build, then you don’t need to install Gradle if the
build has a Gradle Wrapper, identifiable via the gradlew and/or gradlew.bat files in the root of the
build. You just need to make sure your system satisfies Gradle’s prerequisites.

Android Studio comes with a working installation of Gradle, so you don’t need to install Gradle
separately in that case.

In order to create a new build or add a Wrapper to an existing build, you will need to install Gradle
according to these instructions. Note that there may be other ways to install Gradle in addition to
those described on that page, since it’s nearly impossible to keep track of all the package managers
out there.

Try Gradle

Actively using Gradle is a great way to learn about it, so once you’ve installed Gradle, try one of the
introductory hands-on tutorials:

* Building Android apps

* Building Java applications

* Building Java libraries

* Building Groovy applications

* Building Groovy libraries

* Building Scala applications

* Building Scala libraries

* Building Kotlin JVM applications

* Building Kotlin JVM libraries

* Building C++ applications

../samples/sample_building_android_apps.html
../samples/sample_building_java_applications.html
../samples/sample_building_java_libraries.html
../samples/sample_building_groovy_applications.html
../samples/sample_building_groovy_libraries.html
../samples/sample_building_scala_applications.html
../samples/sample_building_scala_libraries.html
../samples/sample_building_kotlin_applications.html
../samples/sample_building_kotlin_libraries.html
../samples/sample_building_cpp_applications.html

Building C++ libraries
Building Swift applications
Building Swift libraries

Creating build scans

There are more samples available on the samples pages.

Command line vs IDEs

Some folks are hard-core command-line users, while others prefer to never leave the comfort of
their IDE. Many people happily use both and Gradle endeavors not to discriminate. Gradle is
supported by several major IDEs and everything that can be done from the command line is
available to IDEs via the Tooling API.

Android Studio and Intelli] IDEA users should consider using Kotlin DSL build scripts for the
superior IDE support when editing them.

Executing Gradle builds

If you follow any of the tutorials linked above, you will execute a Gradle build. But what do you do
if you’re given a Gradle build without any instructions?

Here are some useful steps to follow:

1.

Determine whether the project has a Gradle wrapper and use it if it’s there — the main IDEs
default to using the wrapper when it’s available.

Discover the project structure.

Either import the build with an IDE or run gradle projects from the command line. If only the
root project is listed, it’s a single-project build. Otherwise it’s a multi-project build.

Find out what tasks you can run.

If you have imported the build into an IDE, you should have access to a view that displays all the
available tasks. From the command line, run gradle tasks.

Learn more about the tasks via gradle help --task <taskname>.

The help task can display extra information about a task, including which projects contain that
task and what options the task supports.

Run the task that you are interested in.

Many convention-based builds integrate with Gradle’s lifecycle tasks, so use those when you
don’t have something more specific you want to do with the build. For example, most builds
have clean, check, assemble and build tasks.

From the command line, just run gradle <taskname> to execute a particular task. You can learn
more about command-line execution in the corresponding user manual chapter. If you’re using

../samples/sample_building_cpp_libraries.html
../samples/sample_building_swift_applications.html
../samples/sample_building_swift_libraries.html
https://scans.gradle.com/
../samples/index.html

an IDE, check its documentation to find out how to run a task.

Gradle builds often follow standard conventions on project structure and tasks, so if you’re familiar
with other builds of the same type — such as Java, Android or native builds — then the file and
directory structure of the build should be familiar, as well as many of the tasks and project
properties.

For more specialized builds or those with significant customizations, you should ideally have access
to documentation on how to run the build and what build properties you can configure.

Authoring Gradle builds

Learning to create and maintain Gradle builds is a process, and one that takes a little time. We
recommend that you start with the appropriate core plugins and their conventions for your project,
and then gradually incorporate customizations as you learn more about the tool.

Here are some useful first steps on your journey to mastering Gradle:
1. Try one or two basic tutorials to see what a Gradle build looks like, particularly the ones that
match the type of project you work with (Java, native, Android, etc.).
2. Make sure you’ve read 5 things you need to know about Gradle!
3. Learn about the fundamental elements of a Gradle build: projects, tasks, and the file API.

4. If you are building software for the JVM, be sure to read about the specifics of those types of
projects in Building Java & JVM projects and Testing in Java & JVM projects.

5. Familiarize yourself with the core plugins that come packaged with Gradle, as they provide a lot
of useful functionality out of the box.

6. Learn how to author maintainable build scripts and best organize your Gradle projects.

The user manual contains a lot of other useful information and you can find samples
demonstrating various Gradle features on the samples pages.

Integrating 3rd-party tools with Gradle

Gradle’s flexibility means that it readily works with other tools, such as those listed on our Gradle &
Third-party Tools page.

There are two main modes of integration:

* A tool drives Gradle — uses it to extract information about a build and run it — via the Tooling
API

* Gradle invokes or generates information for a tool via the 3rd-party tool’s APIs — this is usually
done via plugins and custom task types

Tools that have existing Java-based APIs are generally straightforward to integrate. You can find
many such integrations on Gradle’s plugin portal.

../samples/index.html
https://plugins.gradle.org/

Installing Gradle

You can install the Gradle build tool on Linux, macOS, or Windows. This document covers installing
using a package manager like SDKMAN! or Homebrew, as well as manual installation.

Use of the Gradle Wrapper is the recommended way to upgrade Gradle.

You can find all releases and their checksums on the releases page.

Prerequisites
Gradle runs on all major operating systems and requires only a Java Development Kit version 8 or

higher to run. To check, run java -version. You should see something like this:

java -version
java version "1.8.0_151"
Java(TM) SE Runtime Environment (build 1.8.0_151-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.151-b12, mixed mode)

Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any
existing Groovy installation is ignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA_HOME
environment variable to point to the installation directory of the desired JDK.

See the full compatibility notes for Java, Groovy, Kotlin and Android.

Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on most
Unix-like systems (macOS, Linux, Cygwin, Solaris and FreeBSD). We deploy and maintain the
versions available from SDKMAN!.

sdk install gradle
Homebrew is "the missing package manager for macOS".
brew install gradle

Other package managers are available, but the version of Gradle distributed by them is not
controlled by Gradle, Inc. Linux package managers may distribute a modified version of Gradle that
is incompatible or incomplete when compared to the official version (available from SDKMAN! or
below).

{ Proceed to next steps

https://gradle.org/releases
https://jdk.java.net/
http://sdkman.io
http://brew.sh

Installing manually

Step 1. Download the latest Gradle distribution
The distribution ZIP file comes in two flavors:

* Binary-only (bin)

» Complete (all) with docs and sources

Need to work with an older version? See the releases page.

Step 2. Unpack the distribution

Linux & MacOS users

Unzip the distribution zip file in the directory of your choosing, e.g.:

mkdir /opt/gradle
unzip -d /opt/gradle gradle-6.7.1-bin.zip
1s /opt/gradle/gradle-6.7.1
LICENSE NOTICE bin README init.d 1ib media

Microsoft Windows users

Create a new directory C:\Gradle with File Explorer.

Open a second File Explorer window and go to the directory where the Gradle distribution was
downloaded. Double-click the ZIP archive to expose the content. Drag the content folder gradle-
6.7.1to your newly created C:\Gradle folder.

Alternatively, you can unpack the Gradle distribution ZIP into C:\Gradle using an archiver tool of
your choice.

Step 3. Configure your system environment

To run Gradle, the path to the unpacked files from the Gradle website need to be on your terminal’s
path. The steps to do this are different for each operating system.

Linux & MacOS users

Configure your PATH environment variable to include the bin directory of the unzipped distribution,
e.g.

export PATH=$PATH:/opt/gradle/gradle-6.7.1/bin

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your PATH, you can add
$GRADLE_HOME/bin to your PATH. When upgrading to a different version of Gradle, just change the
GRADLE_HOME environment variable.

https://gradle.org/releases
https://gradle.org/releases

Microsoft Windows users

In File Explorer right-click on the This PC (or Computer) icon, then click Properties — Advanced
System Settings — Environmental Variables.

Under System Variables select Path, then click Edit. Add an entry for C:\Gradle\gradle-6.7.1\bin.
Click OK to save.

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your Path, you can add
%GRADLE_HOME%/bin to your Path. When upgrading to a different version of Gradle, just change the
GRADLE_HOME environment variable.

{ Proceed to next steps

Verifying installation

Open a console (or a Windows command prompt) and run gradle -v to run gradle and display the
version, e.g.:

(environment specific information)

If you run into any trouble, see the section on troubleshooting installation.

You can verify the integrity of the Gradle distribution by downloading the SHA-256 file (available
from the releases page) and following these verification instructions.

Next steps
Now that you have Gradle installed, use these resources for getting started:

* Create your first Gradle project by following one of our step-by-step samples.

* Sign up for a live introductory Gradle training with a core engineer.

* Learn how to achieve common tasks through the command-line interface.

* Configure Gradle execution, such as use of an HTTP proxy for downloading dependencies.

* Subscribe to the Gradle Newsletter for monthly release and community updates.

Troubleshooting builds

The following is a collection of common issues and suggestions for addressing them. You can get
other tips and search the Gradle forums and StackOverflow #gradle answers, as well as Gradle

https://gradle.org/releases
../samples/index.html
https://gradle.org/training/intro-to-gradle/
https://newsletter.gradle.com/
https://discuss.gradle.org/c/help-discuss
https://stackoverflow.com/questions/tagged/gradle

documentation from help.gradle.org.

Troubleshooting Gradle installation

If you followed the installation instructions, and aren’t able to execute your Gradle build, here are
some tips that may help.

If you installed Gradle outside of just invoking the Gradle Wrapper, you can check your Gradle
installation by running gradle --version in a terminal.

You should see something like this:

gradle --version

Build time: 2020-06-02 20:46:21 UTC

Revision: a27f41e4ae5e8a41ab9b19f8dd6d86d7b384dad4

Kotlin: 1.3.72

Groovy: 2.5.11

Ant: Apache Ant(TM) version 1.10.7 compiled on September 1 2019
JVM: 14 (AdoptOpen]DK 14+36)

0S: Mac 0S X 10.15.2 x86_64

If not, here are some things you might see instead.

Command not found: gradle

If you get "command not found: gradle", you need to ensure that Gradle is properly added to your
PATH.

JAVA_HOME is set to an invalid directory

If you get something like:

ERROR: JAVA_HOME is set to an invalid directory

Please set the JAVA_HOME variable in your environment to match the location of your
Java installation.

You’ll need to ensure that a Java Development Kit version 8 or higher is properly installed, the
JAVA_HOME environment variable is set, and Java is added to your PATH.

https://help.gradle.org/
https://jdk.java.net/
https://www.java.com/en/download/help/index_installing.xml
https://www.java.com/en/download/help/path.xml
https://www.java.com/en/download/help/path.xml

Permission denied

If you get "permission denied", that means that Gradle likely exists in the correct place, but it is not
executable. You can fix this using chmod +x path/to/executable on *nix-based systems.

Other installation failures

If gradle --version works, but all of your builds fail with the same error, it is possible there is a
problem with one of your Gradle build configuration scripts.

You can verify the problem is with Gradle scripts by running gradle help which executes
configuration scripts, but no Gradle tasks. If the error persists, build configuration is problematic. If
not, then the problem exists within the execution of one or more of the requested tasks (Gradle
executes configuration scripts first, and then executes build steps).

Debugging dependency resolution

Common dependency resolution issues such as resolving version conflicts are covered in
Troubleshooting Dependency Resolution.

You can see a dependency tree and see which resolved dependency versions differed from what
was requested by clicking the Dependencies view and using the search functionality, specifying the
resolution reason.

0@ (< Em| & scans.gradle.com & ™ [l ’T
ﬁ Build Scan e’ v/ gradle :docs:userguide... Feb 21, 2018 3:06:35 PM MST
E Summary Search
Console IOg | [Resolution: Selected different from requested X] |
##+ Timeline
‘M’ Ll . Found 3 dependencies resolved in 1 project across 2 configurations
o Projects
9 Dependencies «docs ~
) asciidoctor ~ - 0.018s
> Plugins org.asciidoctor:asciidoctorj:1.5.2 = 1.5.6 conflict resolution
o= Custom values userGuideTask ~ - 0.011s
g Switches xerces:xerceslmpl:2.9.0 — 2.11.0 conflict resolution

xml-apis:xml-apis:1.3.04 — 1.4.01 conflict resolution

15

Infrastructure

B

Home : Dependencies Close dependency details {esc)

Figure 2. Debugging dependency conflicts with build scans

The actual build scan with filtering criteria is available for exploration.

Troubleshooting slow Gradle builds

For build performance issues (including “slow sync time”), see the guide to Improving the
Performance of Gradle Builds.

https://scans.gradle.com/s/sample/troubleshooting-userguide/dependencies?expandAll&filters=WzFd&toggled=W1swXSxbMF0sWzAsMF0sWzAsMV1d
https://guides.gradle.org/performance/
https://guides.gradle.org/performance/

Android developers should watch a presentation by the Android SDK Tools team about Speeding Up
Your Android Gradle Builds. Many tips are also covered in the Android Studio user guide on
optimizing build speed.

Debugging build logic

Attaching a debugger to your build

You can set breakpoints and debug buildSrc and standalone plugins in your Gradle build itself by
setting the org.gradle.debug property to “true” and then attaching a remote debugger to port 5005.

gradle help -Dorg.gradle.debug=true

In addition, if you’ve adopted the Kotlin DSL, you can also debug build scripts themselves.
The following video demonstrates how to debug an example build using Intelli] IDEA.

[remote debug gradle] | remote-debug-gradle.gif
Figure 3. Interactive debugging of a build script

Adding and changing logging

In addition to controlling logging verbosity, you can also control display of task outcomes (e.g. “UP-
TO-DATE”) in lifecycle logging using the --console=verbose flag.

You can also replace much of Gradle’s logging with your own by registering various event listeners.
One example of a custom event logger is explained in the logging documentation. You can also
control logging from external tools, making them more verbose in order to debug their execution.

Additional logs from the Gradle Daemon can be found wunder
GRADLE_USER_HOME/daemon/<gradle-version>/.

NOTE

Task executed when it should have been UP-TO-DATE

--info logs explain why a task was executed, though build scans do this in a searchable, visual way
by going to the Timeline view and clicking on the task you want to inspect.

https://youtu.be/7ll-rkLCtyk
https://youtu.be/7ll-rkLCtyk
https://developer.android.com/studio/build/optimize-your-build.html
https://developer.android.com/studio/build/optimize-your-build.html

[SN JNEY Em] & scans.gradle.com fth il il ,T
ﬁ Build Scan e v gradle :docs:userguideHtml Feb 21,2018 3:06:35 PM MST (&~ (@)
[Z] “. 12 tasks executed in 1 project in 43.899s ()

= Summary

Console log :docs:userguideAsci...

:docs:userguideHtml

I Performance

52';5 Projects Path Started after Duration Class Order: Execution
¥% Dependencies ExtractDslM|
s Plugins) GenerateDe
o | :docstuserguideAsciidoc H X rT:
o= Custom values :docs:checkSectionlds Started after 0.108s rifi
g Switches :docs:configureCss Duration 8.930s
BE Infrastructure Class org.gradie.build.docs.CacheableAsciidoctorTask
S lel}
The task was not up-to-date because of the following reasons:
Task "docs:userguideAsciidoc' class path has changed from CT:
:docs:userguideDocbook 764654807a0962e25e318676ecec5244 to 1E}
97e9924c30cd3fe08d245f30f54ac92a.
:docs:userguideHtml
Build cache result > Miss (local and remote), Store (local)
Home » Timeline Close timeline (esc)

Figure 4. Debugging incremental build with a build scan

You can learn what the task outcomes mean from this listing.

Debugging IDE integration

Many infrequent errors within IDEs can be solved by '"refreshing" Gradle. See also more
documentation on working with Gradle in Intelli] IDEA and in Eclipse.

Refreshing Intelli] IDEA

NOTE: This only works for Gradle projects linked to Intelli].

From the main menu, go to View > Tool Windows > Gradle. Then click on the Refresh icon.

https://www.jetbrains.com/help/idea/gradle.html
http://www.vogella.com/tutorials/EclipseGradle/article.html
https://www.jetbrains.com/help/idea/gradle.html#link_gradle_project

[] [] | gradle-digest-plugin [~/sreferiwen/gradle-digest-plugin] - .../build.gradle.kis [gradle-digest-plugin]

& Remote Debug Gradle ¥

Refresh all Gradle projects
+ - ©
testRuntimeonly()
X ¥ (& gradle st-plugin (auto-impo

build
build scan
build setup
documentation
help
other
plugin development
plugin portal

>
>
>
>
>
>
>
>
>
>

> K Dependencies

servicelrl("https

Figure 5. Refreshing a Gradle project in Intelli] IDEA

Refreshing Eclipse (using Buildship)

If you're using Buildship for the Eclipse IDE, you can re-synchronize your Gradle build by opening
the "Gradle Tasks" view and clicking the "Refresh" icon, or by executing the Gradle > Refresh Gradle
Project command from the context menu while editing a Gradle script.

L] [] eclipse-workspace - multirepo-app/build.gradle - Eclipse
s @ % B Q- QG HEG @S 4 v o v v 5 &
= & build.gradle 33 = O o Gradle Tasks 33 =] 5
f lapply plugin: 'java' 1IE® &% ° | m
Zapply pl ugin : "application’ N:'mfd Desc Refresh Tasks for All Proje
TR ' ¥ l< multirepo-app =
3 apply pl UQ'I:n . 'Lde(‘l » (22 application B
4apply plugin: 'eclipse' » (2 build scan =]
5 b (2 build setup
- " " > (2 build
6 group or'g.sample b (& distribution
Fd version "1. @'" » (% documentation
8 » (& help
. . - > (Zide
9mainClassName = "org.sample.myapp.Main » (2 verification
10 » = number-utils
. S P,
11 dependencies { b s ingtls
12 compile "org.sample:number-utils:1.@"
13 compile "org.sample:string-utils:1.@"
141

<
L]

Figure 6. Refreshing a Gradle project in Eclipse Buildship

Getting additional help

If you didn’t find a fix for your issue here, please reach out to the Gradle community on the help
forum or search relevant developer resources using help.gradle.org.

If you believe you’ve found a bug in Gradle, please file an issue on GitHub.

https://projects.eclipse.org/projects/tools.buildship
https://discuss.gradle.org/c/help-discuss
https://discuss.gradle.org/c/help-discuss
https://help.gradle.org/
https://github.com/gradle/gradle/issues

Compatibility Matrix

The sections below describe Gradle’s compatibility with several integrations. Other versions not
listed here may or may not work.

Java

A Java version between 8 and 15 is required to execute Gradle. Java 16 and later versions are not
yet supported.

Java 6 and 7 can still be used for compilation and forked test execution.

Any supported version of Java can be used for compile or test.

Kotlin

Gradle is tested with Kotlin 1.3.21 through 1.4.0.

Groovy

Gradle is tested with Groovy 1.5.8 through 2.5.12.

Android

Gradle is tested with Android Gradle Plugin 3.4, 3.5, 3.6 and 4.0. Alpha and beta versions may or
may not work.

Upgrading and Migrating

Upgrading your build from Gradle 6.x to the latest

This chapter provides the information you need to migrate your Gradle 6.x builds to the latest

Gradle release. For migrating from Gradle 4.x or 5.X, see the older migration guide first.

We recommend the following steps for all users:

1. Try running gradle help --scan and view the deprecations view of the generated build scan.

(7 Gradle Enterprise

= Summary

Console log

Timeline

Wk Performance
Projects
Dependencies
Build dependencies
Plugins

Custom values

00 if B 88 38 B

Switches
Infrastructure

“D See before and after
@ Compare build scan

This is so that you can see any deprecation warnings that apply to your build.

v gradle createBuildReceipt Oct 17,2019 2:12:38 PM EDT

The maven plugin has been deprecated.
This is scheduled to be removed in Gradle 7.0.
Please use the maven-publish plugin instead.
86 usages >

The org.gradle javascript-base plugin has been deprecated.
This is scheduled to be removed in Gradle 7.0.
Busages v

org.gradle javascript-base
org.gradle javascript-base
org.gradle javascript-base

Internal API constructor DefaultPolymorphicDomainObjectContainer(Class<T>,

This is scheduled to be removed in Gradle 7.0.
2 usages v
gradlebuild.ide Plugin
org jetbrains.gradle.plugin.idea-ext Plugin
The baseName property has been deprecated.
This is scheduled to be removed in Gradle 7.0.
Please use the archiveBaseName property instead.

1usage v

ubproject ibuti jistributions.gradle:29 Script
The version property has been deprecated.
This is scheduled to be removed in Gradle 7.0.
Please use the archiveVersion property instead.
1 usage v
subprojects/distributi jistributions.gradle:30 Script

ome » Deprecations

Open stacktrace
Open stacktrace
Open stacktrace

Open stacktrace

Open stacktrace

Open stacktrace

Open stacktrace

, Instantiator) has been deprecated.

i= Bulldscans 56

Alternatively, you could run gradle help --warning-mode=all to see the deprecations in the

console, though it may not report as much detailed information.

2. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of

the APIL

3. Run gradle wrapper --gradle-version 6.7.1to update the project to 6.7.1.

4. Try to run the project and debug any errors using the Troubleshooting Guide.

https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

Upgrading from 6.6

Potential breaking changes

buildSrc can now see included builds from the root

Previously, buildSrc was built in such a way that included builds were ignored from the root build.

Since Gradle 6.7, buildSrc can see any included build from the root build. This may cause
dependencies to be substituted from an included build in buildSrc. This may also change the order
in which some builds are executed if an included build is needed by buildSrc.

Updates to default tool integration versions

* PMD has been updated to PMD 6.26.0.
* Checkstyle has been updated to Checkstyle 8.35.
* CodeNarc has been updated to CodeNarc 1.6.1.

Deprecations

Changing default excludes during the execution phase

Gradle’s file trees apply some default exclude patterns for convenience — the same defaults as Ant
in fact. See the user manual for more information. Sometimes, Ant’s default excludes prove
problematic, for example when you want to include the .gitignore in an archive file.

Changing Gradle’s default excludes during the execution phase can lead to correctness problems
with up-to-date checks, and is deprecated. You are only allowed to change Gradle’s default excludes
in the settings script, see the user manual for an example.

Using a Configuration directly as a dependency

Gradle allowed instances of Configuration to be used directly as dependencies:

dependencies {
implementation(configurations.myConfiguration)

}

This behavior is now deprecated as it is confusing: one could expect the "dependent configuration"
to be resolved first and add the result of resolution as dependencies to the including configuration,
which is not the case. The deprecated version can be replaced with the actual behavior, which is
configuration inheritance:

configurations.implementation.extendsFrom(configurations.myConfiguration)

https://github.com/pmd/pmd/releases/tag/pmd_releases%2F6.26.0
https://checkstyle.sourceforge.io/releasenotes.html#Release_8.35
https://github.com/CodeNarc/CodeNarc/blob/v1.6.1/CHANGELOG.md

Upgrading from 6.5

Potential breaking changes

Updates to bundled Gradle dependencies
* Ant has been updated to 1.10.8.
* Groovy has been updated to Groovy 2.5.12.
Dependency substitutions and variant aware dependency resolution

While adding support for expressing variant support in dependency substitutions, a bug fix
introduced a behaviour change that some builds may rely upon. Previously a substituted
dependency would still use the attributes of the original selector instead of the ones from the
replacement selector.

With that change, existing substitutions around dependencies with richer selectors, such as for
platform dependencies, will no longer work as they did. It becomes mandatory to define the variant
aware part in the target selector.

You can be affected by this change if you:

* have dependencies on platforms, like implementation platform("org:platform:1.0")
* or if you specify attributes on dependencies,

* and you use resolution rules on these dependencies.
See the documentation for resolving issues if you are impacted.

Deprecations

No deprecations were made in Gradle 6.6.

Upgrading from 6.4

Potential breaking changes

Updates to bundled Gradle dependencies

 Kotlin has been updated to Kotlin 1.3.72.

* Groovy has been updated to Groovy 2.5.11.

Updates to default tool integration versions
* PMD has been updated to PMD 6.23.0.
Deprecations

Internal class AbstractTask is deprecated

AbstractTask is an internal class which is visible on the public API, as a superclass of public type

https://downloads.apache.org/ant/RELEASE-NOTES-1.10.8.html
https://groovy-lang.org/changelogs/changelog-2.5.12.html
https://github.com/JetBrains/kotlin/releases/tag/v1.3.72
https://groovy-lang.org/changelogs/changelog-2.5.11.html
https://github.com/pmd/pmd/releases/tag/pmd_releases%2F6.23.0

DefaultTask. AbstractTask will be removed in Gradle 7.0, and the following are deprecated in Gradle
6.5:

* Registering a task whose type is AbstractTask or TaskInternal. You can remove the task type
from the task registration and Gradle will use DefaultTask instead.

* Registering a task whose type is a subclass of AbstractTask but not a subclass of DefaultTask. You
can change the task type to extend DefaultTask instead.

 Using the class AbstractTask from plugin code or build scripts. You can change the code to use
DefaultTask instead.

Upgrading from 6.3

Potential breaking changes

PMD plugin expects PMD 6.0.0 or higher by default

Gradle 6.4 enabled incremental analysis by default. Incremental analysis is only available in PMD
6.0.0 or higher. If you want to use an older PMD version, you need to disable incremental analysis:

pmd {
incrementalAnalysis = false

}

Changes in dependency locking

With Gradle 6.4, the incubating API for dependency locking LockMode has changed. The value is now
set via a Property<LockMode> instead of a direct setter. This means that the notation to set the value
has to be updated for the Kotlin DSL:

dependencylocking {
lockMode.set(LockMode.STRICT)

}

Users of the Groovy DSL should not be impacted as the notation lockMode = LockMode.STRICT
remains valid.

Java versions in published metadata

If a Java library is published with Gradle Module Metadata, the information which Java version it
supports is encoded in the org.gradle.jvm.version attribute. By default, this attribute was set to
what you configured in java.targetCompatibility. If that was not configured, it was set to the
current Java version running Gradle. Changing the version of a particular compile task, e.g.
javaCompile.targetCompatibility had no effect on that attribute, leading to wrong information if the
attribute was not adjusted manually. This is now fixed and the attribute defaults to the setting of
the compile task that is associated with the sources from which the published jar is built.

Ivy repositories with custom layouts

Gradle versions from 6.0 to 6.3.x included could generate bad Gradle Module Metadata when
publishing on an Ivy repository which had a custom repository layout. Starting from 6.4, Gradle will
no longer publish Gradle Module Metadata if it detects that you are using a custom repository
layout.

New properties may shadow variables in build scripts

This release introduces some new properties—mainClass, mainModule, modularity —in different
places. Since these are very generic names, there is a chance that you use one of them in your build
scripts as variable name. A new property might then shadow one of your variables in an undesired
way, leading to a build failure where the property is accessed instead of the local variable with the
same name. You can fix it by renaming the corresponding variable in the build script.

Affected is configuration code inside the application {} and java {} configuration blocks, inside a
java execution setup with project.javaexec {}, and inside various task configurations (JavaExec,
CreateStartScripts, JavaCompile, Test, Javadoc).

Updates to bundled Gradle dependencies

* Kotlin has been updated to Kotlin 1.3.71.

Deprecations

There were no deprecations between Gradle 6.3 and 6.4.

Upgrading from 6.2

Potential breaking changes

Fewer dependencies available in IDEA

Gradle no longer includes the annotation processor classpath as provided dependencies in IDEA.
The dependencies IDEA sees at compile time are the same as what Gradle sees after resolving the
compile classpath (configuration named compileClasspath). This prevents the leakage of annotation
processor dependencies into the project’s code.

Before Gradle introduced incremental annotation processing support, IDEA required all annotation
processors to be on the compilation classpath to be able to run annotation processing when
compiling in IDEA. This is no longer necessary because Gradle has a separate annotation processor
classpath. The dependencies for annotation processors are not added to an IDEA module’s classpath
when a Gradle project with annotation processors is imported.

Updates to bundled Gradle dependencies

 Kotlin has been updated to Kotlin 1.3.70.

* Groovy has been updated to Groovy 2.5.10.

https://github.com/JetBrains/kotlin/releases/tag/v1.3.71
https://blog.jetbrains.com/kotlin/2020/03/kotlin-1-3-70-released/
http://groovy-lang.org/changelogs/changelog-2.5.10.html

Updates to default tool integration versions

* PMD has been updated to PMD 6.21.0.

* CodeNarc has been updated to CodeNarc 1.5.

Rich console support removed for some 32-bit operating systems

Gradle 6.3 does not support the rich console for 32-bit Unix systems and for old FreeBSD versions
(older than FreeBSD 10). Microsoft Windows 32-bit is unaffected.

Gradle will continue building projects on 32-bit systems but will no longer show the rich console.

Deprecations

Using default and archives configurations

Almost every Gradle project has the default and archives configurations which are added by the
base plugin. These configurations are no longer used in modern Gradle builds that use variant
aware dependency management and the new publishing plugins.

While the configurations will stay in Gradle for backwards compatibility for now, using them to
declare dependencies or to resolve dependencies is now deprecated.

Resolving these configurations was never an intended use case and only possible because in earlier
Gradle versions every configuration was resolvable. For declaring dependencies, please use the
configurations provided by the plugins you use, for example by the Java Library plugin.

Upgrading from 6.1

Potential breaking changes

Compile and runtime classpath now request library variants by default

A classpath in a JVM project now explicitly requests the org.gradle.category=1library attribute. This
leads to clearer error messages if a certain library cannot be used. For example, when the library
does not support the required Java version. The practical effect is that now all platform
dependencies have to be declared as such. Before, platform dependencies also worked, accidentally,
when the platform() keyword was omitted for local platforms or platforms published with Gradle
Module Metadata.

Properties from project root gradle.properties leaking into buildSrc and included builds

There was a regression in Gradle 6.2 and Gradle 6.2.1 that caused Gradle properties set in the
project root gradle.properties file to leak into the buildSrc build and any builds included by the
root.

This could cause your build to start failing if the buildSrc build or an included build suddenly found
an unexpected or incompatible value for a property coming from the project root gradle.properties
file.

The regression has been fixed in Gradle 6.2.2.

https://pmd.github.io/pmd-6.21.0/pmd_release_notes.html#24-january-2020---6210
https://github.com/CodeNarc/CodeNarc/blob/v1.5/CHANGELOG.md#version-15----nov-2019

Deprecations

There were no deprecations between Gradle 6.1 and 6.2.

Upgrading from 6.0 and earlier

Deprecations

Querying a mapped output property of a task before the task has completed

Querying the value of a mapped output property before the task has completed can cause strange
build failures because it indicates stale or non-existent outputs may be used by mistake. This
behavior is deprecated and will emit a deprecation warning. This will become an error in Gradle
7.0.

The following example demonstrates this problem where the Producer’s output file is parsed
before the Producer executes:

class Consumer extends DefaultTask {

@Input

final Property<Integer> threadPoolSize = ...
}

class Producer extends DefaultTask {
@0utputFile
final ReqularFileProperty outputFile = ...

}

// threadPoolSize is read from the producer's outputFile
consumer .threadPoolSize = producer.outputFile.map { it.text.toInteger() }

// Emits deprecation warning

println("thread pool size = " + consumer.threadPoolSize.get())

Querying the value of consumer.threadPoolSize will produce a deprecation warning if done prior to
producer completing, as the output file has not yet been generated.

Discontinued methods

The following methods have been discontinued and should no longer be used. They will be
removed in Gradle 7.0.

« BasePluginConvention.setProject(ProjectInternal)
« BasePluginConvention.getProject()

o StartParameter.useEmptySettings()

o StartParameter.isUseEmptySettings()

Alternative JVM plugins (a.k.a "Software Model")

A set of alternative plugins for Java and Scala development were introduced in Gradle 2.x as an

experiment based on the "software model". These plugins are now deprecated and will eventually
be removed. If you are still using one of these old plugins (java-lang, scala-1lang, jvm-component, jvm-
resources, junit-test-suite) please consult the documentation on Building Java & JVM projects to
determine which of the stable JVM plugins are appropriate for your project.

Potential breaking changes

ProjectLayout is no longer available to worker actions as a service

In Gradle 6.0, the ProjectLayout service was made available to worker actions via service injection.
This service allowed for mutable state to leak into a worker action and introduced a way for
dependencies to go undeclared in the worker action.

ProjectLayout has been removed from the available services. Worker actions that were using
ProjectlLayout should switch to injecting the projectDirectory or buildDirectory as a parameter
instead.

Updates to bundled Gradle dependencies

 Kotlin has been updated to Kotlin 1.3.61.

Updates to default tool integration versions

* Checkstyle has been updated to Checkstyle 8.27.
* PMD has been updated to PMD 6.20.0.

Publishing Spring Boot applications

Starting from Gradle 6.2, Gradle performs a sanity check before uploading, to make sure you don’t
upload stale files (files produced by another build). This introduces a problem with Spring Boot
applications which are uploaded using the components.java component:

Artifact my-application-0.0.1-SNAPSHOT.jar wasn't produced by this build.

This is caused by the fact that the main jar task is disabled by the Spring Boot application, and the
component expects it to be present. Because the bootJar task uses the same file as the main jar task
by default, previous releases of Gradle would either:

* publish a stale bootJar artifact

o or fail if the bootJar task hasn’t been called previously

A workaround is to tell Gradle what to upload. If you want to upload the bootJar, then you need to
configure the outgoing configurations to do this:

https://blog.jetbrains.com/kotlin/2019/11/kotlin-1-3-60-released/
https://checkstyle.org/releasenotes.html#Release_8.27
https://pmd.github.io/pmd-6.20.0/pmd_release_notes.html#29-november-2019---6200

configurations {
[apiElements, runtimeElements].each {
it.outgoing.artifacts.removelf {
it.buildDependencies.getDependencies(null).contains(jar) }
it.outgoing.artifact(bootJar)

Alternatively, you might want to re-enable the jar task, and add the bootJar with a different
classifier.

jar {
enabled = true

bootJar {
classifier = 'application’

Upgrading your build from Gradle 5.x to 6.0

This chapter provides the information you need to migrate your Gradle 5.x builds to Gradle 6.0. For
migrating from Gradle 4.x, complete the 4.x to 5.0 guide first.

We recommend the following steps for all users:

1. Try running gradle help --scan and view the deprecations view of the generated build scan.

(&2 Gradle Enterprise T gradle createBuildReceipt Oct 17,2019 2:12:38 PM EDT i= Bulldscans 56
= i The maven plugin has been deprecated.
ol This is scheduled to be removed in Gradle 7.0.

Console log Please use the maven-publish plugin instead.

(D Deprecations 86 usages >

i Timeline The org gradle javascript-base plugin has been deprecated.

I Performance This is scheduled to be removed in Gradle 7.0.

s Projects Jusages v .

org.gradle javascript-base Open stacktrace

$2 Dependencies org.gradle javascript-base Open stacktrace
gg Build dependencies org.gradle.javascript-base Open stacktrace
[+ Plugins Internal API constructor DefaultPolymorphicDomainObjectContainer(Class<T>, Instantiator) has been deprecated.

_ This is scheduled to be removed in Gradle 7.0.
S= Custom values

2 usages

& Switches gradlebuild.ide Plugin~ Open stacktrace
- org etbrains.gradle.plugin.idea-ext Plugin ~ Open stacktrace

The baseName property has been deprecated.
o - q This is scheduled to be removed in Gradle 7.0.
See before and after Please use the archiveBaseName property instead.

@D Compare build scan 1 usage v

ubprojec ibutions/distributions.gradie:29 Script Open stacktrace
The version property has been deprecated.
This is scheduled to be removed in Gradle 7.0.
Please use the archiveVersion property instead.
1 usage v
subprojects/distributions/distributions.gradle:30 Script Open stacktrace

jome » Deprecations Close build deprecations (esc

https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

This is so that you can see any deprecation warnings that apply to your build.

Alternatively, you could run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

2. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of
the APIL.

3. Run gradle wrapper --gradle-version 6.7.1 to update the project to 6.7.1.

4. Try to run the project and debug any errors using the Troubleshooting Guide.

Upgrading from 5.6 and earlier

Deprecations

Dependencies should no longer be declared using the compile and runtime configurations

The usage of the compile and runtime configurations in the Java ecosystem plugins has been
discouraged since Gradle 3.4.

These configurations are used for compiling and running code from the main source set. Other
sources sets create similar configurations (e.g. testCompile and testRuntime for the test source set),
should not be used either. The implementation, api, compileOnly and runtimeOnly configurations
should be used to declare dependencies and the compileClasspath and runtimeClasspath
configurations to resolve dependencies. See the relationship of these configurations.

Legacy publication system is deprecated and replaced with the *-publish plugins
The uploadArchives task and the maven plugin are deprecated.

Users should migrate to the publishing system of Gradle by using either the maven-publish or ivy-
publish plugins. These plugins have been stable since Gradle 4.8.

The publishing system is also the only way to ensure the publication of Gradle Module Metadata.

Problems with tasks emit deprecation warnings

When Gradle detects problems with task definitions (such as incorrectly defined inputs or outputs)
it will show the following message on the console:

https://docs.gradle.org/3.4/release-notes.html#the-java-library-plugin

Deprecated Gradle features were used in this build, making it incompatible with Gradle
7.0.

Use '--warning-mode all' to show the individual deprecation warnings.

See
https://docs.gradle.org/6.0/userquide/command_line_interface.html#sec:command_line_war
nings

The deprecation warnings show up in build scans for every build, regardless of the command-line
switches used.

When the build is executed with --warning-mode all, the individual warnings will be shown:

> Task :myTask

Property 'inputDirectory' is declared without normalization specified. Properties of
cacheable work must declare their normalization via @PathSensitive, @Classpath or
@CompileClasspath. Defaulting to PathSensitivity.ABSOLUTE. This behaviour has been
deprecated and is scheduled to be removed in Gradle 7.0.

Property 'outputFile' is not annotated with an input or output annotation. This
behaviour has been deprecated and is scheduled to be removed in Gradle 7.0.

If you own the code of the tasks in question, you can fix them by following the suggestions. You can
also use --stacktrace to see where in the code each warning originates from.

Otherwise, you’ll need to report the problems to the maintainer of the relevant task or plugin.

0Old API for incremental tasks, IncrementalTaskInputs, has been deprecated

In Gradle 5.4 we introduced a new API for implementing incremental tasks: InputChanges. The old
API based on IncrementalTaskInputs has been deprecated.

Forced dependencies
Forcing dependency versions using force = true on a first-level dependency has been deprecated.

Force has both a semantic and ordering issue which can be avoided by using a strict version
constraint.

Search upwards related APIs in StartParameter have been deprecated
In Gradle 5.0, we removed the --no-search-upward CLI parameter.
The related APIs in StartParameter (like isSearchUpwards()) are now deprecated.

APIs BuildListener.buildStarted and Gradle.buildStarted have been deprecated

These methods currently do not work as expected since the callbacks will never be called after the
build has started.

The methods are being deprecated to avoid confusion.

https://scans.gradle.com/s/txrptciitl2ha/deprecations
https://docs.gradle.org/6.7.1/dsl/org.gradle.work.InputChanges.html

Implicit duplicate strategy for Copy or archive tasks has been deprecated

Archive tasks Tar and Zip by default allow multiple entries for the same path to exist in the created
archive. This can cause "grossly invalid zip files" that can trigger zip bomb detection.

To prevent this from happening accidentally, encountering duplicates while creating an archive
now produces a deprecation message and will fail the build starting with Gradle 7.0.

Copy tasks also happily copy multiple sources with the same relative path to the destination
directory. This behavior has also been deprecated.

If you want to allow duplicates, you can specify that explicitly:

task archive(type: Zip) {
duplicatesStrategy = DuplicatesStrategy.INCLUDE // allow duplicates

Executing Gradle without a settings file has been deprecated

A Gradle build is defined by a settings.gradle[.kts] file in the current or parent directory. Without
a settings file, a Gradle build is undefined and will emit a deprecation warning.

In Gradle 7.0, Gradle will only allow you to invoke the init task or diagnostic command line flags,
such as --version, with undefined builds.

Calling Project.afterEvaluate on an evaluated project has been deprecated

Once a project is evaluated, Gradle ignores all configuration passed to Project#afterEvaluate and
emits a deprecation warning. This scenario will become an error in Gradle 7.0.

Deprecated plugins

The following bundled plugins were never announced and will be removed in the next major
release of Gradle:

« 0rg.gradle.coffeescript-base
« org.gradle.envjs

« org.gradle.javascript-base

o org.gradle.jshint

« org.gradle.rhino
Some of these plugins may have replacements on the Plugin Portal.
Potential breaking changes

Android Gradle Plugin 3.3 and earlier is no longer supported

Gradle 6.0 supports Android Gradle Plugin versions 3.4 and later.

https://github.com/gradle/gradle/issues/9990
https://plugins.gradle.org/

Build scan plugin 2.x is no longer supported

For Gradle 6, usage of the build scan plugin must be replaced with the Gradle Enterprise plugin.
This also requires changing how the plugin is applied. Please see https://gradle.com/help/gradle-6-
build-scan-plugin for more information.

Updates to bundled Gradle dependencies

* Groovy has been updated to Groovy 2.5.8.
* Kotlin has been updated to Kotlin 1.3.50.

* Ant has been updated to Ant 1.10.7.

Updates to default integration versions

* Checkstyle has been updated to Checkstyle 8.24.
* CodeNarc has been updated to CodeNarc 1.4.
* PMD has been updated to PMD 6.17.0.

* JaCoCo has been updated to 0.8.5. Contributed by Evgeny Mandrikov

Changes to build and task names in composite builds

Previously, Gradle used the name of the root project as the build name for an included build. Now,
the name of the build’s root directory is used and the root project name is not considered if
different. A different name for the build can be specified if the build is being included via a settings
file.

includeBuild("some-other-build") {
name = "another-name"

The previous behavior was problematic as it caused different names to be used at different times
during the build.

buildSrc is now reserved as a project and subproject build name

Previously, Gradle did not prevent using the name “buildSrc” for a subproject of a multi-project
build or as the name of an included build. Now, this is not allowed. The name “buildSrc” is now
reserved for the conventional buildSrc project that builds extra build logic.

Typical use of buildSrc is unaffected by this change. You will only be affected if your settings file
specifies include("buildSrc") or includeBuild("buildSrc").

Scala Zinc compiler

The Zinc compiler has been upgraded to version 1.3.0. Gradle no longer supports building for Scala
2.9.

The minimum Zinc compiler supported by Gradle is 1.2.0 and the maximum tested version is 1.3.0.

https://gradle.com/help/gradle-6-build-scan-plugin
https://gradle.com/help/gradle-6-build-scan-plugin
http://groovy-lang.org/changelogs/changelog-2.5.8.html
https://blog.jetbrains.com/kotlin/2019/08/kotlin-1-3-50-released/
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.10.7.html
https://checkstyle.org/releasenotes.html#Release_8.24
https://github.com/CodeNarc/CodeNarc/blob/master/CHANGELOG.md#version-14---may-2019
https://pmd.github.io/latest/pmd_release_notes.html#28-july-2019---6170
http://www.jacoco.org/jacoco/trunk/doc/changes.html
https://github.com/Godin

To make it easier to select the version of the Zinc compiler, you can now configure a zincVersion
property:

scala {
zincVersion = "1.2.1"

Please remove any explicit dependencies you’ve added to the zinc configuration and use this
property instead. If you try to use the com.typesafe.zinc:zinc dependency, Gradle will switch to the
new Zinc implementation.

Changes to Build Cache

Local build cache is always a directory cache

In the past, it was possible to use any build cache implementation as the local cache. This is no
longer allowed as the local cache must always be a DirectoryBuildCache.

Calls to BuildCacheConfiguration.local(Class) with anything other than DirectoryBuildCache as the
type will fail the build. Calling these methods with the DirectoryBuildCache type will produce a
deprecation warning.

Use getlocal() and local(Action) instead.

Failing to pack or unpack cached results will now fail the build

In the past, when Gradle encountered a problem while packing the results of a cached task, Gradle
would ignore the problem and continue running the build.

When encountering a corrupt cached artifact, Gradle would remove whatever was already
unpacked and re-execute the task to make sure the build had a chance to succeed.

While this behavior was intended to make a build successful, this had the adverse effect of hiding
problems and led to reduced cache performance.

In Gradle 6.0, both pack and unpack errors will cause the build to fail, so that these problems will
be surfaced more easily.

buildSrc projects automatically use build cache configuration

Previously, in order to to use the build cache for the buildSrc build you needed to duplicate your
build cache config in the buildSrc build. Now, it automatically uses the build cache configuration
defined by the top level settings script.

Changes to Dependency Management

Gradle Module Metadata is always published

Officially introduced in Gradle 5.3, Gradle Module Metadata was created to solve many of the
problems that have plagued dependency management for years, in particular, but not exclusively,

https://blog.gradle.org/gradle-metadata-1.0

in the Java ecosystem.
With Gradle 6.0, Gradle Module Metadata is enabled by default.

This means, if you are publishing libraries with Gradle and using the maven-publish or ivy-publish
plugin, the Gradle Module Metadata file is always published in addition to traditional metadata.

The traditional metadata file will contain a marker so that Gradle knows that there is additional
metadata to consume.

Gradle Module Metadata has stricter validation

The following rules are verified when publishing Gradle Module Metadata:
* Variant names must be unique,
e Each variant must have at least one attribute,

» Two variants cannot have the exact same attributes and capabilities,

* If there are dependencies, at least one, across all variants, must carry version information.

These are documented in the specification as well.

Maven or Ivy repositories are no longer queried for artifacts without metadata by default

If Gradle fails to locate the metadata file (.pom or ivy.xml) of a module in a repository defined in the
repositories { } section, it now assumes that the module does not exist in that repository.

For dynamic versions, the maven-metadata.xml for the corresponding module needs to be present in
a Maven repository.

Previously, Gradle would also look for a default artifact (.jar). This behavior often caused a large
number of unnecessary requests when using multiple repositories that slowed builds down.

You can opt into the old behavior for selected repositories by adding the artifact() metadata
source.

Changing the pom packaging property no longer changes the artifact extension

Previously, if the pom packaging was not jar, ejb, bundle or maven-plugin, the extension of the main
artifact published to a Maven repository was changed during publishing to match the pom
packaging.

This behavior led to broken Gradle Module Metadata and was difficult to understand due to
handling of different packaging types.

Build authors can change the artifact name when the artifact is created to obtain the same result as
before — e.g. by setting jar.archiveExtension.set(pomPackaging) explicitly.

An ivy.xml published for Java libraries contains more information

A number of fixes were made to produce more correct ivy.xml metadata in the ivy-publish plugin.

https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md

As a consequence, the internal structure of the ivy.xml file has changed. The runtime configuration
now contains more information, which corresponds to the runtimeElements variant of a Java
library. The default configuration should yield the same result as before.

In general, users are advised to migrate from ivy.xml to the new Gradle Module Metadata format.

Changes to Plugins and Build scripts

Classes from buildSrc are no longer visible to settings scripts

Previously, the buildSrc project was built before applying the project’s settings script and its classes
were visible within the script. Now, buildSrc is built after the settings script and its classes are not
visible to it. The buildSrc classes remain visible to project build scripts and script plugins.

Custom logic can be used from a settings script by declaring external dependencies.

The pluginManagement block in settings scripts is now isolated

Previously, any pluginManagement {} blocks inside a settings script were executed during the normal
execution of the script.

Now, they are executed earlier in a similar manner to buildscript {} or plugins {}. This means that
code inside such a block cannot reference anything declared elsewhere in the script.

This change has been made so that pluginManagement configuration can also be applied when
resolving plugins for the settings script itself.

Plugins and classes loaded in settings scripts are visible to project scripts and buildSrc

Previously, any classes added to the a settings script by using buildscript {} were not visible
outside of the script. Now, they they are visible to all of the project build scripts.

They are also visible to the buildSrc build script and its settings script.

This change has been made so that plugins applied to the settings script can contribute logic to the
entire build.

Plugin validation changes

* The validateTaskProperties task is now deprecated, use validatePlugins instead. The new name
better reflects the fact that it also validates artifact transform parameters and other non-
property definitions.

* The ValidateTaskProperties type is replaced by ValidatePlugins.

* The set(Classes() method is now removed. Use getClasses().setFrom() instead.

* The set(Classpath() method is also removed. use getClasspath().setFrom() instead.
* The failOnWarning option is now enabled by default.

* The following task validation errors now fail the build at runtime and are promoted to errors
for ValidatePlugins:

o A task property is annotated with a property annotation not allowed for tasks, like

https://docs.gradle.org/6.7.1/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html#getFailOnWarning--
https://docs.gradle.org/6.7.1/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html

@InputArtifact.

Changes to Kotlin DSL

Using the embedded-kot1lin plugin now requires a repository

Just like when using the kotlin-dsl plugin, it is now required to declare a repository where Kotlin
dependencies can be found if you apply the embedded-kot1in plugin.

plugins {
‘embedded-kotlin®
}

repositories {
jecenter()

}

Kotlin DSL IDE support now requires Kotlin Intelli] Plugin >= 1.3.50

With Kotlin Intelli] plugin versions prior to 1.3.50, Kotlin DSL scripts will be wrongly highlighted
when the Gradle JVM is set to a version different from the one in Project SDK. Simply upgrade your
IDE plugin to a version >= 1.3.50 to restore the correct Kotlin DSL script highlighting behavior.

Kotlin DSL script base types no longer extend Project, Settings or Gradle

In previous versions, Kotlin DSL scripts were compiled to classes that implemented one of the three
core Gradle configuration interfaces in order to implicitly expose their APIs to scripts.
org.gradle.api.Project for project scripts, org.gradle.api.initialization.Settings for settings
scripts and org.gradle.api.invocation.Gradle for init scripts.

Having the script instance implement the core Gradle interface of the model object it was supposed
to configure was convenient because it made the model object API immediately available to the
body of the script but it was also a lie that could cause all sorts of trouble whenever the script itself
was used in place of the model object, a project script was not a proper Project instance just
because it implemented the core Project interface and the same was true for settings and init
scripts.

In 6.0 all Kotlin DSL scripts are compiled to classes that implement the newly introduced
org.gradle.kotlin.dsl.KotlinScript interface and the corresponding model objects are now
available as implicit receivers in the body of the scripts. In other words, a project script behaves as if
the body of the script is enclosed within a with(project) { -+ } block, a settings script as if the body
of the script is enclosed within a with(settings) { '+ } block and an init script as if the body of the
script is enclosed within a with(gradle) { --- } block. This implies the corresponding model object
is also available as a property in the body of the script, the project property for project scripts, the
settings property for settings scripts and the gradle property for init scripts.

As part of the change, the SettingsScriptApi interface is no longer implemented by settings scripts
and the InitScriptApi interface is no longer implemented by init scripts. They should be replaced
with the corresponding model object interfaces, Settings and Gradle.

Miscellaneous

Javadoc and Groovydoc don’t include timestamps by default

Timestamps in the generated documentation have very limited practical use, however they make it
impossible to have repeatable documentation builds. Therefore, the Javadoc and Groovydoc tasks are
now configured to not include timestamps by default any more.

User provided 'config_loc' properties are ignored by Checkstyle

Gradle always uses configDirectory as the value for 'config_loc' when running Checkstyle.

New Tooling API progress event

In Gradle 6.0, we introduced a new progress event (org.gradle.tooling.events.test.TestOutputEvent)
to expose the output of test execution. This new event breaks the convention of having a StartEvent-
FinisEvent pair to express progress. TaskOutputEvent is a simple ProgressEvent.

Changes to the task container behavior
The following deprecated methods on the task container now result in errors:

« TaskContainer.add()

« TaskContainer.addAl1l()

« TaskContainer.remove()

« TaskContainer.removeAll()
« TaskContainer.retainAll()
« TaskContainer.clear()

« TaskContainer.iterator().remove()

Additionally, the following deprecated functionality now results in an error:

* Replacing a task that has already been realized.

* Replacing a registered (unrealized) task with an incompatible type. A compatible type is the
same type or a sub-type of the registered type.

* Replacing a task that has never been registered.

Replaced and Removed APIs

Methods on DefaultTask and ProjectlLayout replaced with ObjectFactory
Use ObjectFactory.fileProperty() instead of the following methods that are now removed:

« DefaultTask.newInputFile()
« DefaultTask.newOutputFile()
« Projectlayout.fileProperty()

Use ObjectFactory.directoryProperty() instead of the following methods that are now removed:

o DefaultTask.newInputDirectory()

https://docs.gradle.org/6.7.1/javadoc/org/gradle/tooling/events/test/TestOutputEvent.html

« DefaultTask.newOutputDirectory()
o Projectlayout.directoryProperty()

Annotation @Nullable has been removed

The org.gradle.api.Nullable annotation type has been removed. Use javax.annotation.Nullable
from JSR-305 instead.

The FindBugs plugin has been removed

The deprecated FindBugs plugin has been removed. As an alternative, you can use the SpotBugs
plugin from the Gradle Plugin Portal.

The JDepend plugin has been removed

The deprecated JDepend plugin has been removed. There are a number of community-provided
plugins for code and architecture analysis available on the Gradle Plugin Portal.

The OSGI plugin has been removed

The deprecated OSGI plugin has been removed. There are a number of community-provided OSGI
plugins available on the Gradle Plugin Portal.

The announce and build-announcements plugins have been removed

The deprecated announce and build-announcements plugins have been removed. There are a
number of community-provided plugins for sending out notifications available on the Gradle
Plugin Portal.

The Compare Gradle Builds plugin has been removed

The deprecated Compare Gradle Builds plugin has been removed. Please use build scans for build
analysis and comparison.

The Play plugins have been removed

The deprecated Play plugin has been removed. An external replacement, the Play Framework
plugin, is available from the plugin portal.

Method AbstractCompile.compile() method has been removed
The abstract method compile() is no longer declared by AbstractCompile.

Tasks extending AbstractCompile can implement their own @TaskAction method with the name of
their choosing.

They are also free to add a method annotated with @TaskAction using an InputChanges parameter
without having to implement a parameter-less one as well.

Other Deprecated Behaviors and APIs

* The org.gradle.util.GUtil.savePropertiesNoDateComment has been removed. There is no public

https://plugins.gradle.org/plugin/com.github.spotbugs
https://plugins.gradle.org/plugin/com.github.spotbugs
https://plugins.gradle.org/search?term=spotbugs
https://plugins.gradle.org
https://plugins.gradle.org/search?term=osgi
https://plugins.gradle.org
https://plugins.gradle.org
https://scans.gradle.com/
https://gradle.github.io/playframework
https://gradle.github.io/playframework

replacement for this internal method.

The deprecated class org.gradle.api.tasks.compile.CompilerArgumentProvider has been
removed. Use org.gradle.process.CommandLineArgumentProvider instead.

The deprecated class org.gradle.api.ConventionProperty has been removed. Use Providers
instead of convention properties.

The deprecated class org.gradle.reporting.DurationFormatter has been removed.

The bridge method org.gradle.api.tasks.TaskInputs.property(String name, @Nullable Object
value) returning TaskInputs has been removed. A plugin using the method must be compiled
with Gradle 4.3 to work on Gradle 6.0.

The following setters have been removed from JacocoReportBase:
o executionData - use getExecutionData().setFrom() instead.
o sourceDirectories - use getSourceDirectories().setFrom() instead.
o classDirectories - use getClassDirectories().setFrom() instead.
o additionalClassDirs - use getAdditionalClassDirs().setFrom() instead.
o additionalSourceDirs - use getAdditionalSourceDirs().setFrom() instead.

The append property on JacocoTaskExtension has been removed. append is now always configured
to be true for the Jacoco agent.

The configureDefaultOutputPathForJacocoMerge method on JacocoPlugin has been removed. The
method was never meant to be public.

File paths in deployment descriptor file name for the ear plugin are not allowed any more. Use a
simple name, like application.xml, instead.

The org.gradle.testfixtures.ProjectBuilder constructor has been removed. Please use
ProjectBuilder.builder() instead.

When incremental Groovy compilation is enabled, a wrong configuration of the source roots or
enabling Java annotation for Groovy now fails the build. Disable incremental Groovy
compilation when you want to compile in those cases.

ComponentSelectionRule no longer can inject the metadata or ivy descriptor. Use the methods on
the ComponentSelection parameter instead.

Declaring an incremental task without declaring outputs is now an error. Declare file outputs or
use TaskOutputs.upToDateWhen() instead.

The getEffectiveAnnotationProcessorPath() method is removed from the JavaCompile and
ScalaCompile tasks.

Changing the value of a task property with type Property<T> after the task has started execution
now results in an error.

The isLegacylLayout() method is removed from SourceSetQutput.

The map returned by TaskInputs.getProperties() is now unmodifiable. Trying to modify it will
result in an UnsupportedOperationException being thrown.

There are slight changes in the incubating capabilities resolution API, which has been
introduced in 5.6, to also allow variant selection based on variant name

https://docs.gradle.org/6.7.1/javadoc/org/gradle/process/CommandLineArgumentProvider.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/6.7.1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:executionData
https://docs.gradle.org/6.7.1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:sourceDirectories
https://docs.gradle.org/6.7.1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:classDirectories
https://docs.gradle.org/6.7.1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:additionalClassDirs
https://docs.gradle.org/6.7.1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:additionalSourceDirs
https://docs.gradle.org/6.7.1/javadoc/org/gradle/plugins/ear/descriptor/DeploymentDescriptor.html#getFileName--
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-

Upgrading from 5.5 and earlier

Deprecations

Changing the contents of ConfigurableFileCollection task properties after task starts execution

When a task property has type ConfigurableFileCollection, then the file collection referenced by
the property will ignore changes made to the contents of the collection once the task starts
execution. This has two benefits. Firstly, this prevents accidental changes to the property value
during task execution which can cause Gradle up-to-date checks and build cache lookup using
different values to those used by the task action. Secondly, this improves performance as Gradle can
calculate the value once and cache the result.

This will become an error in Gradle 6.0.

Creating SignOperation instances

Creating SignOperation instances directly is now deprecated. Instead, the methods of
SigningExtension should be used to create these instances.

This will become an error in Gradle 6.0.

Declaring an incremental task without outputs

Declaring an incremental task without declaring outputs is now deprecated. Declare file outputs or
use TaskOutputs.upToDateWhen() instead.

This will become an error in Gradle 6.0.

Method WorkerExecutor.submit() is deprecated

The WorkerExecutor.submit() method is now deprecated. The new nolsolation(),
classloaderIsolation() and processIsolation() methods should now be used to submit work. See
the userguide for more information on using these methods.

WorkerExecutor.submit() will be removed in Gradle 7.0.

Potential breaking changes

Task dependencies are honored for task @Input properties whose value is a Property

Previously, task dependencies would be ignored for task @Input properties of type Property<T>.
These are now honored, so that it is possible to attach a task output property to a task @Input

property.

This may introduce unexpected cycles in the task dependency graph, where the value of an output
property is mapped to produce a value for an input property.

Declaring task dependencies using a file Provider that does not represent a task output

Previously, it was possible to pass Task.dependsOn() a Provider<File>, Provider<RegularFile> or
Provider<Directory> instance that did not represent a task output. These providers would be silently

https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-

ignored.
This is now an error because Gradle does not know how to build files that are not task outputs.

Note that it is still possible to to pass Task.dependsOn() a Provider that returns a file and that
represents a task output, for example myTask.dependsOn(jar.archiveFile) or
myTask.dependsOn(taskProvider.flatMap { it.outputDirectory }), when the Provider is an annotated
@OutputFile or @OutputDirectory property of a task.

Setting Property value to null uses the property convention

Previously, calling Property.set(null) would always reset the value of the property to 'not defined'.
Now, the convention that is associated with the property using the convention() method will be
used to determine the value of the property.

Enhanced validation of names for publishing.publications and publishing.repositories

The repository and publication names are used to construct task names for publishing. It was
possible to supply a name that would result in an invalid task name. Names for publications and
repositories are now restricted to [A-Za-z0-9_\\-.]+.

Restricted Worker API classloader and process classpath

Gradle now prevents internal dependencies (like Guava) from leaking into the classpath used by
Worker API actions. This fixes an issue where a worker needs to use a dependency that is also used
by Gradle internally.

In previous releases, it was possible to rely on these leaked classes. Plugins relying on this behavior
will now fail. To fix the plugin, the worker should explicitly include all required dependencies in its
classpath.

Default PMD version upgraded to 6.15.0

The PMD plugin has been upgraded to use PMD version 6.15.0 instead of 6.8.0 by default.

Contributed by wreulicke

Configuration copies have unique names

Previously, all copies of a configuration always had the name <0riginConfigurationName>Copy. Now
when creating multiple copies, each will have a unique name by adding an index starting from the
second copy. (e.g. CompileOnlyCopy2)

Changed classpath filtering for Eclipse

Gradle 5.6 no longer supplies custom classpath attributes in the Eclipse model. Instead, it provides
the attributes for Eclipse test sources. This change requires Buildship version 3.1.1 or later.

Embedded Kotlin upgraded to 1.3.41

Gradle Kotlin DSL scripts and Gradle Plugins authored using the kotlin-dsl plugin are now
compiled using Kotlin 1.3.41.

https://github.com/gradle/gradle/issues/3698
https://pmd.github.io/pmd-6.15.0/pmd_release_notes.html
https://github.com/wreulicke
https://www.eclipse.org/eclipse/news/4.8/jdt.php#jdt-test-sources

Please see the Kotlin blog post and changelog for more information about the included changes.

The minimum supported Kotlin Gradle Plugin version is now 1.2.31. Previously it was 1.2.21.

Automatic capability conflict resolution

Previous versions of Gradle would automatically select, in case of capability conflicts, the module
which has the highest capability version. Starting from 5.6, this is an opt-in behavior that can be
activated using:

configurations.all {
resolutionStrategy.capabilitiesResolution.all { selectHighestVersion() }

}

See the capabilities section of the documentation for more options.

File removal operations don’t follow symlinked directories

When Gradle has to remove the output files of a task for various reasons, it will not follow
symlinked directories. The symlink itself will be deleted, but the contents of the linked directory
will stay intact.

Disabled debug argument parsing in JavaExec

Gradle 5.6 introduced a new DSL element (
JavaForkOptions.debugOptions(Action<JavaDebugOptions>)) to configure debug properties for forked
Java processes. Due to this change, Gradle no longer parses debug-related JVM arguments.
Consequently, JavaForkOptions.getDebu() no longer returns true if the
-Xrunjdwp:transport=dt_socket,server=y, suspend=y,address=5005 or the
-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005 argument is specified to the
process.

Scala 2.9 and Zinc compiler

Gradle no longer supports building applications using Scala 2.9.

Upgrading from 5.4 and earlier

Deprecations

Play

The built-in Play plugin has been deprecated and will be replaced by a new Play Framework plugin
available from the plugin portal.

Build Comparison

The build comparison plugin has been deprecated and will be removed in the next major version of
Gradle.

https://blog.jetbrains.com/kotlin/2019/06/kotlin-1-3-40-released/
https://github.com/JetBrains/kotlin/blob/1.3.40/ChangeLog.md
play_plugin.pdf#play_plugin
https://gradle.github.io/playframework

Build scans show much deeper insights into your build and you can use Gradle Enterprise to
directly compare two build’s build-scans.

Potential breaking changes

User supplied Eclipse project names may be ignored on conflict

Project names configured via EclipseProject.setName(::-) were honored by Gradle and Buildship in
all cases, even when the names caused conflicts and import/synchronization errors.

Gradle can now deduplicate these names if they conflict with other project names in an Eclipse
workspace. This may lead to different Eclipse project names for projects with user-specified names.

The upcoming 3.1.1 version of Buildship is required to take advantage of this behavior.

Contributed by Christian Frankel

Default JaCoCo version upgraded to 0.8.4

The JaCoCo plugin has been upgraded to use JaCoCo version 0.8.4 instead of 0.8.3 by default.

Contributed by Evgeny Mandrikov

Embedded Ant version upgraded to 1.9.14

The version of Ant distributed with Gradle has been upgraded to 1.9.14 from 1.9.13.

Type DependencyHandler now statically exposes ExtensionAware

This affects Kotlin DSL build scripts that make use of ExtensionAware extension members such as the
extra properties accessor inside the dependencies {} block. The receiver for those members will no
longer be the enclosing Project instance but the dependencies object itself, the innermost
ExtensionAware conforming receiver. In order to address Project extra properties inside
dependencies {} the receiver must be explicitly qualified i.e. project.extra instead of just extra.
Affected extensions also include the<T>() and configure<T>(T.() - Unit).

Improved processing of dependency excludes

Previous versions of Gradle could, in some complex dependency graphs, have a wrong result or a
randomized dependency order when lots of excludes were present. To mitigate this, the algorithm
that computes exclusions has been rewritten. In some rare cases this may cause some differences in
resolution, due to the correctness changes.

Improved classpath separation for worker processes

The system classpath for worker daemons started by the Worker API when using PROCESS isolation
has been reduced to a minimum set of Gradle infrastructure. User code is still segregated into a
separate classloader to isolate it from the Gradle runtime. This should be a transparent change for
tasks using the worker API, but previous versions of Gradle mixed user code and Gradle internals
in the worker process. Worker actions that rely on things like the java.class.path system property
may be affected, since java.class.path now represents only the classpath of the Gradle internals.

https://gradle.com/build-scans
https://gradle.com/
https://docs.gradle.org/6.7.1/javadoc/org/gradle/plugins/ide/eclipse/model/EclipseProject.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/plugins/ide/eclipse/model/EclipseProject.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/plugins/ide/eclipse/model/EclipseProject.html
https://github.com/fraenkelc
http://www.jacoco.org/jacoco/trunk/doc/changes.html
https://github.com/Godin
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.9.14.html

Upgrading from 5.3 and earlier

Deprecations

Using custom local build cache implementations

Using a custom build cache implementation for the local build cache is now deprecated. The only
allowed type will be DirectoryBuildCache going forward. There is no change in the support for using
custom build cache implementations as the remote build cache.

Potential breaking changes

Use HTTPS when configuring Google Hosted Libraries via googleApis()

The Google Hosted Libraries URL accessible via
JavaScriptRepositoriesExtension#GO0GLE_APIS_REPO_URL was changed to use the HTTPS protocol. The
change also affect the Ivy repository configured via googleApis().

Upgrading from 5.2 and earlier

Potential breaking changes

Bug fixes in platform resolution

There was a bug from Gradle 5.0 to 5.2.1 (included) where enforced platforms would potentially
include dependencies instead of constraints. This would happen whenever a POM file defined both
dependencies and "constraints" (via <dependencyManagement>) and that you used enforcedPlatform.
Gradle 5.3 fixes this bug, meaning that you might have differences in the resolution result if you
relied on this broken behavior. Similarly, Gradle 5.3 will no longer try to download jars for platform
and enforcedPlatform dependencies (as they should only bring in constraints).

Automatic target JVM version

If you apply any of the Java plugins, Gradle will now do its best to select dependencies which match
the target compatibility of the module being compiled. What it means, in practice, is that if you
have module A built for Java 8, and module B built for Java 8, then there’s no change. However if B
is built for Java 9+, then it’s not binary compatible anymore, and Gradle would complain with an
error message like the following:

Unable to find a matching variant of project :producer:

- Variant 'apiElements' capability test:producer:unspecified:
- Provides org.gradle.dependency.bundling 'external’
- Required org.gradle.jvm.version '8"' and found incompatible value '9".
- Required org.gradle.usage 'java-api' and found value 'java-api-jars'.

- Variant 'runtimeElements' capability test:producer:unspecified:
- Provides org.gradle.dependency.bundling 'external’
- Required org.gradle.jvm.version '8' and found incompatible value '9'.
- Required org.gradle.usage 'java-api' and found value 'java-runtime-jars'.

In general, this is a sign that your project is misconfigured and that your dependencies are not
compatible. However, there are cases where you still may want to do this, for example when only a
subset of classes of your module actually need the Java 9 dependencies, and are not intended to be
used on earlier releases. Java in general doesn’t encourage you to do this (you should split your
module instead), but if you face this problem, you can workaround by disabling this new behavior
on the consumer side:

java {
disableAutoTargetJvm()
}

Bug fix in Maven / Ivy interoperability with dependency substitution

If you have a Maven dependency pointing to an Ivy dependency where the default configuration
dependencies do not match the compile + runtime + master ones and that Ivy dependency was
substituted (using a resolutionStrategy.force, resolutionStrategy.eachDependency or
resolutionStrategy.dependencySubstitution) then this fix will impact you. The legacy behaviour of
Gradle, prior to 5.0, was still in place instead of being replaced by the changes introduced by
improved pom support.

Delete operations correctly handle symbolic links on Windows

Gradle no longer ignores the followSymlink option on Windows for the clean task, all Delete tasks,
and project.delete {} operations in the presence of junction points and symbolic links.

Fix in publication of additional artifacts

In previous Gradle versions, additional artifacts registered at the project level were not published
by maven-publish or ivy-publish unless they were also added as artifacts in the publication
configuration.

With Gradle 5.3, these artifacts are now properly accounted for and published.

This means that artifacts that are registered both on the project and the publication, Ivy or Maven,
will cause publication to fail since it will create duplicate entries. The fix is to remove these artifacts
from the publication configuration.

Upgrading from 5.1 and earlier

Potential breaking changes

none

Upgrading from 5.0 and earlier

Deprecations

Follow the API links to learn how to deal with these deprecations (if no extra information is
provided here):

o Setters for classes and classpath on ValidateTaskProperties

* There should not be setters for lazy properties like ConfigurableFileCollection. Use setFrom
instead. For example,

validateTaskProperties.getClasses().setFrom(fileCollection)
validateTaskProperties.getClasspath().setFrom(fileCollection)

Potential breaking changes

The following changes were not previously deprecated:

Signing API changes

Input and output files of Sign tasks are now tracked via Signature.getToSign() and
Signature.getFile(), respectively.

Collection properties default to empty collection

In Gradle 5.0, the collection property instances created using ObjectFactory would have no value
defined, requiring plugin authors to explicitly set an initial value. This proved to be awkward and
error prone so ObjectFactory now returns instances with an empty collection as their initial value.

Worker API: working directory of a worker can no longer be set

Since JDK 11 no longer supports changing the working directory of a running process, setting the
working directory of a worker via its fork options is now prohibited. All workers now use the same
working directory to enable reuse. Please pass files and directories as arguments instead. See
examples in the Worker API documentation.

Changes to native linking tasks

To expand our idiomatic Provider API practices, the install name property from
org.gradle.nativeplatform.tasks.LinkSharedLibrary is affected by this change.

» getInstallName() was changed to return a Property.

» setInstallName(String) was removed. Use Property.set() instead.

Passing arguments to Windows Resource Compiler

To expand our idiomatic Provider API practices, the WindowsResourceCompile task has been
converted to use the Provider APIL.

Passing additional compiler arguments now follow the same pattern as the CppCompile and other
tasks.

Copied configuration no longer shares a list of beforeResolve actions with original

The list of beforeResolve actions are no longer shared between a copied configuration and the
original. Instead, a copied configuration receives a copy of the beforeResolve actions at the time the

https://docs.gradle.org/6.7.1/javadoc/org/gradle/plugin/devel/tasks/ValidateTaskProperties.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/file/ConfigurableFileCollection.html

copy is made. Any beforeResolve actions added after copying (to either configuration) will not be
shared between the original and the copy. This may break plugins that relied on the previous
behaviour.

Changes to incubating POM customization types

» The type of MavenPomDeveloper.properties has changed from Property<Map<String, String>> to
MapProperty<String, String>.

* The type of MavenPomContributor.properties has changed from Property<Map<String, String>>to
MapProperty<String, String>.

Changes to specifying operating system for native projects

The incubating operatingSystems property on native components has been replaced with the
targetMachines property.

Changes for archive tasks (Zip, Jar, War, Ear, Tar)

Change in behavior for tasks extending AbstractArchiveTask

The AbstractArchiveTask has several new properties using the Provider API. Plugins that extend
these types and override methods from the base class may no longer behave the same way.
Internally, AbstractArchiveTask prefers the new properties and methods like getArchiveName() are
facades over the new properties.

If your plugin/build only uses these types (and does not extend them), nothing has changed.

Upgrading your build from Gradle 4.x to 5.0

This chapter provides the information you need to migrate your older Gradle 4.x builds to Gradle
5.0. In most cases, you will need to apply the changes from all versions that come after the one
you’re upgrading from. For example, if you’re upgrading from Gradle 4.3 to 5.0, you will also need
to apply the changes since 4.4, 4.5, etc up to 5.0.

If you are using Gradle for Android, you need to move to version 3.3 or higher of both

TIP
the Android Gradle Plugin and Android Studio.

For all users

1. If you are not already on the latest 4.10.x release, read the sections below for help upgrading
your project to the latest 4.10.x release. We recommend upgrading to the latest 4.10.x release to
get the most useful warnings and deprecations information before moving to 5.0. Avoid
upgrading Gradle and migrating to Kotlin DSL at the same time in order to ease troubleshooting
in case of potential issues.

2. Try running gradle help --scan and view the deprecations view of the generated build scan. If
there are no warnings, the Deprecations tab will not appear.

https://docs.gradle.org/6.7.1/javadoc/org/gradle/language/cpp/CppComponent.html#getTargetMachines()
https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

CS?Gradle Enterprise T« gradle createBuildReceipt ~Oct 17,2019 2:12:38 PM EDT 3= Buildscans 5C

= Sy The maven plugin has been deprecated.
— This s scheduled to be removed in Gradle 7.0.
Console log Please use the maven-publish plugin instead.

(D Deprecations 86 usages >
e Timeline The org.gradle.javascript-base plugin has been deprecated.
b Performance This is scheduled to be removed in Gradle 7.0.
& Projects Susges v

org.gradle javascript-base Plugin Open stacktrace
&% Dependencies org.gradlejavascript-base Plugin Open stacktrace
89 Build dependencies org.gradle javascript-base Plugin Open stacktrace
[Plugins Internal API constructor DefaultPolymorphicDomainObjectContainer(Class<T>, Instantiator) has been deprecated.
_ This is scheduled to be removed in Gradle 7.0.
5= Custom values)

usages -

& switches gradlebuild.ide Plugin Open stacktrace

orgjetbrains.gradle plugin.idea-ext Plugin ~ Open stacktrace

B Infrastructure
The baseName property has been deprecated.

) See before and after This is scheduled lc! be removed in Gradle 70
Please use the archiveBaseName property instead.

@D Compare build scan 1 usage v

jons.gradle:29 Script Open stacktrace

The version property has been deprecated.
This is scheduled to be removed in Gradle 7.0.
Please use the archiveVersion property instead.
1 usage v
subprojects/distributi istributions.gradle:30 Script Open stacktrace

Home » Deprecations Close build deprecations (esc

This is so that you can see any deprecation warnings that apply to your build. Gradle 5.x will
generate (potentially less obvious) errors if you try to upgrade directly to it.

Alternatively, you could run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

3. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of
the APIL.

In particular, you will need to use at least a 2.x version of the Shadow Plugin.

4. Run gradle wrapper --gradle-version 5.0 to update the project to 5.0

5. Move to Java 8 or higher if you haven’t already. Whereas Gradle 4.x requires Java 7, Gradle 5
requires Java 8 to run.

6. Read the Upgrading from 4.10 section and make any necessary changes.
7. Try to run the project and debug any errors using the Troubleshooting Guide.

In addition, Gradle has added several significant new and improved features that you should
consider using in your builds:

* Maven Publish and Ivy Publish Plugins that now support digital signatures with the Signing
Plugin.
* Use native BOM import in your builds.

» The Worker API for enabling units of work to run in parallel.

https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow

* A new API for creating and configuring tasks lazily that can significantly improve your build’s
configuration time.

Other notable changes to be aware of that may break your build include:

» Separation of compile and runtime dependencies when consuming POMs

* A change that means you should configure existing wrapper and init tasks rather than defining
your own.

* The honoring of implicit wildcards in Maven POM exclusions, which may result in
dependencies being excluded that weren’t before.

* A change to the way you add Java annotation processors to a project.

* The default memory settings for the command-line client, the Gradle daemon, and all workers
including compilers and test executors, have been greatly reduced.

* The default versions of several code quality plugins have been updated.

» Several library versions used by Gradle have been upgraded.

Upgrading from 4.10 and earlier

If you are not already on version 4.10, skip down to the section that applies to your current Gradle
version and work your way up until you reach here. Then, apply these changes when moving from
Gradle 4.10 to 5.0.

Other changes

e The enableFeaturePreview('IMPROVED _POM_SUPPORT") and
enableFeaturePreview('STABLE_PUBLISHING') flags are no longer necessary. These features are
now enabled by default.

* Gradle now bundles JAXB for Java 9 and above. You can remove the --add-modules
java.xml.bind option from org.gradle. jvmargs, if set.

Potential breaking changes

The changes in this section have the potential to break your build, but the vast majority have been
deprecated for quite some time and few builds will be affected by a large number of them. We
strongly recommend upgrading to Gradle 4.10 first to get a report on what deprecations affect your
build.

The following breaking changes are not from deprecations, but the result of changes in behavior:

* Separation of compile and runtime dependencies when consuming POMs

* The evaluation of the publishing {} block is no longer deferred until needed but behaves like
any other block. Please use afterEvaluate {} if you need to defer evaluation.

* The Javadoc and Groovydoc tasks now delete the destination dir for the documentation before
executing. This has been added to remove stale output files from the last task execution.

» The Java Library Distribution Plugin is now based on the Java Library Plugin instead of the Java
Plugin.

https://docs.gradle.org/6.7.1/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

While it applies the Java Plugin, it behaves slightly different (e.g. it adds the api configuration).
Thus, make sure to check whether your build behaves as expected after upgrading.

e The html property on CheckstyleReport and FindBugsReport now returns a
CustomizableHtmlReport instance that is easier to configure from statically typed languages like
Java and Kotlin.

* The Configuration Avoidance API has been updated to prevent the creation and configuration of
tasks that are never used.

* The default memory settings for the command-line client, the Gradle daemon, and all workers
including compilers and test executors, have been greatly reduced.

» The default versions of several code quality plugins have been updated.

» Several library versions used by Gradle have been upgraded.
The following breaking changes will appear as deprecation warnings with Gradle 4.10:

General

<< for task definitions no longer works. In other words, you can not use the syntax task
myTask << { == }.

Use the Task.doLast() method instead, like this:

task myTask {
dolLast {

* You can no longer use any of the following characters in domain object names, such as
project and task names: <space>/ \ : < > " ? * | . You should also not use . as a leading or
trailing character.

Running Gradle & build environment

* As mentioned before, Gradle can no longer be run on Java 7. However, you can still use
forked compilation and testing to build and test software for Java 6 and above.

* The -Dtest.single command-line option has been removed — use test filtering instead.

* The -Dtest.debug command-line option has been removed — use the --debug-jvm option
instead.

* The -u/--no-search-upward command-line option has been removed — make sure all your
builds have a settings.gradle file.

* The --recompile-scripts command-line option has been removed.

* You can no longer have a Gradle build nested in a subdirectory of another Gradle build
unless the nested build has a settings.gradle file.

* The DirectoryBuildCache.setTargetSizeInMB(long) method has been removed — use
DirectoryBuildCache.removeUnusedEntriesAfterDays instead.

https://docs.gradle.org/6.7.1/dsl/org.gradle.api.reporting.CustomizableHtmlReport.html
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
https://docs.gradle.org/6.7.1/dsl/org.gradle.caching.local.DirectoryBuildCache.html#org.gradle.caching.local.DirectoryBuildCache:removeUnusedEntriesAfterDays

* The org.gradle.readlLoggingConfigFile system property no longer does anything — update
affected tests to work with your java.util.logging settings.

Working with files
* You can no longer cast FileCollection objects to other types using the as keyword or the
asType() method.

* You can no longer pass null as the configuration action of CopySpec.from(Object, Action).

* For better compatibility with the Kotlin DSL, CopySpec.duplicatesStrategy is no longer
nullable. The property setter no longer accepts null as a way to reset the property back to its
default value. Use DuplicatesStrategy.INHERIT instead.

» The FileCollection.stopExecutionIfEmpty() method has been removed — wuse the
@SkipWhenEmpty annotation on FileCollection task properties instead.

» The FileCollection.add() method has been removed —use Project.files() and
Project.fileTree() to create configurable file collections/file trees and add to them via
ConfigurableFileCollection.from().

» SimpleFileCollection has been removed — use Project.files(Object...) instead.
* Don’t have your own classes extend AbstractFileCollection — use the Project.files() method

instead. This problem may exhibit as a missing getBuildDependencies() method.

Java builds

» The CompileOptions.bootClasspath property has been removed — use
CompileOptions.bootstrapClasspath instead.

* You can no longer use -source-path as a generic compiler argument — use
CompileOptions.sourcepath instead.

* You can no longer use -processorpath as a generic compiler argument — use
CompileOptions.annotationProcessorPath instead.

* Gradle will no longer automatically apply annotation processors that are on the compile
classpath — use CompileOptions.annotationProcessorPath instead.

* The test(ClassesDir property has been removed from the Test task — use testClassesDirs
instead.

» The classesDir property has been removed from both the JDepend task and SourceSetOutput.
Use the JDepend.classesDirs and SourceSetOutput.classesDirs properties instead.

* The Javalibrary(PublishArtifact, DependencySet) constructor has been removed — this was
used by the Shadow Plugin, so make sure you upgrade to at least version 2.x of that plugin.

* The JavaBasePlugin.configureForSourceSet() method has been removed.

* You can no longer create your own instances of JavaPluginConvention,
ApplicationPluginConvention, WarPluginConvention, EarPluginConvention,
BasePluginConvention, and ProjectReportsPluginConvention.

* The Maven Plugin used to publish the highly outdated Maven 2 metadata format. This has
been changed and it will now publish Maven 3 metadata, just like the Maven Publish Plugin.

With the removal of Maven 2 support, the methods that configure unique snapshot behavior

https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object-org.gradle.api.Action-
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/file/DuplicatesStrategy.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/file/ConfigurableFileCollection.html#from-java.lang.Object...-
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:bootstrapClasspath
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:sourcepath
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:annotationProcessorPath
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:annotationProcessorPath
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:testClassesDirs
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.tasks.SourceSetOutput.html
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.tasks.SourceSetOutput.html#org.gradle.api.tasks.SourceSetOutput:classesDirs
https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/plugins/JavaPluginConvention.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/plugins/ApplicationPluginConvention.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/plugins/WarPluginConvention.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/plugins/ear/EarPluginConvention.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/plugins/BasePluginConvention.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/plugins/ProjectReportsPluginConvention.html

have also been removed. Maven 3 only supports unique snapshots, so we decided to remove
them.

Tasks & properties
* The following legacy classes and methods related to lazy properties have been removed
— use ObjectFactory.property() to create Property instances:
o PropertyState
o DirectoryVar
o RegularFileVar
o Projectlayout.newDirectoryVar()
o Projectlayout.newFileVar()
o Project.property(Class)
o Script.property(Class)
o ProviderFactory.property(Class)

» Tasks configured and registered with the task configuration avoidance APIs have more
restrictions on the other methods that can be called from a configuration action.

* The internal @0ption and @0ptionValues annotations — package
org.gradle.api.internal.tasks.options — have been removed. Use the public @Option and
@OptionValues annotations instead.

» The Task.deleteAllActions() method has been removed with no replacement.

* The Task.dependsOnTaskDidWork() method has been removed — use declared inputs and
outputs instead.

» The following properties and methods of TaskInternal have been removed — use task
dependencies, task rules, reusable utility methods, or the Worker API in place of executing a
task directly.

. execute()

o executer

- getValidators()
» addValidator()

* The TaskInputs.file(Object) method can no longer be called with an argument that resolves to
anything other than a single regular file.

» The TaskInputs.dir(Object) method can no longer be called with an argument that resolves to
anything other than a single directory.

* You can no longer register invalid inputs and outputs via TaskInputs and TaskOutputs.

* The TaskDestroyables.file() and TaskDestroyables.files() methods have been removed
— use TaskDestroyables.register() instead.

* SimpleWorkResult has been removed — use WorkResult.didWork.

* Overriding built-in tasks deprecated in 4.8 now produces an error.

Attempting to replace a built-in task will produce an error similar to the following:

https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-
task_configuration_avoidance.pdf#sec:task_configuration_avoidance_migration_guidelines
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/options/Option.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/options/OptionValues.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskInputs.html#file-java.lang.Object-
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskInputs.html#dir-java.lang.Object-
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskInputs.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskOutputs.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskDestroyables.html#register-java.lang.Object...-
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/WorkResult.html#getDidWork--

> Cannot add task 'wrapper' as a task with that name already exists.

Scala & Play
 Play 2.2 is no longer supported — please upgrade the version of Play you are using.
* The ScalaDocOptions.styleSheet property has been removed — the Scaladoc Ant task in Scala
2.11.8 and later no longer supports this property.

Kotlin DSL

* Artifact configuration accessors now have the type
NamedDomainObjectProvider<Configuration> instead of Configuration

* PluginAware.apply<T>(to) was renamed PluginAware.applyTo<T>(target).

Both changes could cause script compilation errors. See the Gradle Kotlin DSL release notes for
more information and how to fix builds broken by the changes described above.

Miscellaneous

 The ConfigurableReport.setDestination(Object) method has been removed — use
ConfigurableReport.setDestination(File) instead.

* The Signature.setFile(File) method has been removed — Gradle does not support changing
the output file for the generated signature.

» The read-only Signature.toSignArtifact property has been removed — it should never have
been part of the public APIL

* The @DeferredConfigurable annotation has been removed.
* The method isDeferredConfigurable() was removed from ExtensionSchema.

» IdeaPlugin.performPostEvaluationActions() and
EclipsePlugin.performPostEvaluationActions() have been removed.

* The ‘BroadcastingCollectionEventRegister.getAddAction() method has been removed with no
replacement.

* The internal org.gradle.util package is no longer imported by default.
Ideally you shouldn’t use classes from this package, but, as a quick fix, you can add explicit
imports to your build scripts for those classes.

» The gradlePluginPortal() repository no longer looks for JARs without a POM by default.

» The Tooling API can no longer connect to builds using a Gradle version below Gradle 2.6. The
same applies to builds run through TestKit.

* Gradle 5.0 requires a minimum Tooling API client version of 3.0. Older client libraries can no
longer run builds with Gradle 5.0.

* The IdeaModule Tooling API model element contains methods to retrieve resources and test
resources so those elements were removed from the result of IdeaModule.getSourceDirs()
and IdeaModule.getTestSourceDirs().

* In previous Gradle versions, the source field in SourceTask was accessible from subclasses.

https://github.com/gradle/kotlin-dsl-samples/releases/tag/v1.0.2#breaking-changes
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/reporting/ConfigurableReport.html#setDestination-java.io.File-

This is not the case anymore as the source field is now declared as private.
* In the Worker API, the working directory of a worker can no longer be set.

* A change in behavior related to dependency and version constraints may impact a small
number of users.

* There have been several changes to property factory methods on DefaultTask that may
impact the creation of custom tasks.

Upgrading from 4.9 and earlier

If you are not already on version 4.9, skip down to the section that applies to your current Gradle
version and work your way up until you reach here. Then, apply these changes when upgrading to
Gradle 4.10.

Deprecated classes, methods and properties

Follow the API links to learn how to deal with these deprecations (if no extra information is
provided here):

» TaskContainer.add() and TaskContainer.addA11() —use TaskContainer.create() or
TaskContainer.register() instead

Potential breaking changes

* There have been several potentially breaking changes in Kotlin DSL — see the Breaking changes
section of that project’s release notes.

* You can no longer use any of the Project.beforeEvaluate() or Project.afterEvaluate() methods
with lazy task configuration, for example inside a TaskContainer.register() block.

» Publishing to AWS S3 requires new permissions.

* Both PluginUnderTestMetadata and GeneratePluginDescriptors — classes used by the Java
Gradle Plugin Development Plugin — have been updated to use the Provider API.

Use the Property.sset() method to modify their values rather than using standard property
assignment syntax, unless you are doing so in a Groovy build script. Standard property
assignment still works in that one case.

Upgrading from 4.8 and earlier

* Consider trying the lazy API for task creation and configuration

Potential breaking changes

* You can no longer use GPath syntax with tasks.withType().

Use Groovy’s spread operator instead. For example, you would replace
tasks.withType(JavaCompile).name with tasks.withType(JavaCompile)*.name.

https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskContainer.html#create-java.lang.String-java.lang.Class-org.gradle.api.Action-
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskContainer.html#register-java.lang.String-java.lang.Class-org.gradle.api.Action-
https://github.com/gradle/kotlin-dsl/releases/tag/v1.0-RC3
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:beforeEvaluate(org.gradle.api.Action)
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:afterEvaluate(org.gradle.api.Action)
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskContainer.html#register-java.lang.String-java.lang.Class-org.gradle.api.Action-
https://docs.gradle.org/6.7.1/javadoc/org/gradle/plugin/devel/tasks/PluginUnderTestMetadata.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/plugin/devel/tasks/GeneratePluginDescriptors.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/provider/Property.html#set-T-
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskCollection.html#withType-java.lang.Class-
https://docs.groovy-lang.org/latest/html/documentation/#_spread_operator

Upgrading from 4.7 and earlier

Switch to the Maven Publish and Ivy Publish plugins
Use deferred configuration with the publishing plugins
Configure existing wrapper and init tasks rather than defining your own

Consider migrating to the built-in dependency locking mechanism if you are currently using a
plugin or custom solution for this

Potential breaking changes

Build will now fail if a specified init script is not found.

TaskContainer.remove() now actually removes the given task — some plugins may have
accidentally relied on the old behavior.

Gradle now honors implicit wildcards in Maven POM exclusions.

The Kotlin DSL now respects JSR-305 package annotations.

This will lead to some types annotated according to JSR-305 being treated as nullable where
they were treated as non-nullable before. This may lead to compilation errors in the build
script. See the relevant Kotlin DSL release notes for details.

Error messages will be directed to standard error rather than standard output now, unless a
console is attached to both standard output and standard error. This may affect tools that scrape
a build’s plain console output. Ignore this change if you’re upgrading from an earlier version of
Gradle.

Deprecations

Prior to this release, builds were allowed to replace built-in tasks. This feature has been deprecated.

The full list of built-in tasks that should not be replaced is: wrapper, init, help, tasks, projects,

buildEnvironment, components, dependencies, dependencyInsight, dependentComponents, model,
properties.

Upgrading from 4.6 and earlier

Potential breaking changes

Gradle will now, by convention, look for Checkstyle configuration files in the root project’s
config/checkstyle directory.

Checkstyle configuration files in subprojects — the old by-convention location — will be ignored
unless you explicitly configure their path via checkstyle.configDir or checkstyle.config.

The structure of Gradle’s plain console output has changed, which may break tools that scrape
that output.

The APIs of many native tasks related to compilation, linking and installation have changed in
breaking ways.

https://github.com/gradle/kotlin-dsl/releases/tag/v0.17.4
https://docs.gradle.org/4.8/release-notes.html#overwriting-gradle's-built-in-tasks
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html#org.gradle.api.plugins.quality.CheckstyleExtension:configDir
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html#org.gradle.api.plugins.quality.CheckstyleExtension:config

[Kotlin DSL] Delegated properties used to access Gradle’s build properties — defined in
gradle.properties for example — must now be explicitly typed.

[Kotlin DSL] Declaring a plugins {} block inside a nested scope now throws an exception.
[Kotlin DSL] Only one pluginManagement {} block is allowed now.

The cache control DSL provided by the org.gradle.api.artifacts.cache.* interfaces are no
longer available.

getEnabledDirectoryReportDestinations(), getEnabledFileReportDestinations() and
getEnabledReportNames() have all been removed from org.gradle.api.reporting.ReportContainer.

StartParameter.projectProperties and StartParameter.systemPropertiesArgs now return
immutable maps.

Upgrading from 4.5 and earlier

Deprecations

You should not put annotation processors on the compile classpath or declare them with the
-processorpath compiler argument.

They should be added to the annotationProcessor configuration instead. If you don’t want any
processing, but your compile classpath contains a processor unintentionally (e.g. as part of a
library you depend on), use the -proc:none compiler argument to ignore it.

Use CommandLineArgumentProvider in place of CompilerArgumentProvider.

Potential breaking changes

The Java plugins now add a sourceSetAnnotationProcessor configuration for each source set,
which might break if any of them match existing configurations you have. We recommend you
remove your conflicting configuration declarations.

The StartParameter.taskOutputCacheEnabled property has been replaced by
StartParameter.setBuildCacheEnabled(boolean).

The Visual Studio integration now only configures a single solution for all components in a
build.

Gradle has replaced HttpClient 4.4.1 with version 4.5.5.

Gradle now bundles the kotlin-stdlib-jdk8 artifact instead of kotlin-stdlib-jre8. This may
affect your build. Please see the Kotlin documentation for more details.

Upgrading from 4.4 and earlier

Make sure you have a settings.gradle file: it avoids a performance penalty and allows you to set
the root project’s name.

Gradle now ignores the build cache configuration of included builds (composite builds) and
instead uses the root build’s configuration for all the builds.

https://docs.gradle.org/6.7.1/javadoc/org/gradle/StartParameter.html#getProjectProperties--
https://docs.gradle.org/6.7.1/javadoc/org/gradle/StartParameter.html#getSystemPropertiesArgs--
https://docs.gradle.org/6.7.1/javadoc/org/gradle/process/CommandLineArgumentProvider.html
https://docs.gradle.org/4.10.3/javadoc/org/gradle/api/tasks/compile/CompilerArgumentProvider.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/StartParameter.html#setBuildCacheEnabled-boolean-
http://kotlinlang.org/docs/reference/whatsnew12.html#kotlin-standard-library-artifacts-and-split-packages

Potential breaking changes

Two overloaded ValidateTaskProperties.setOutputFile() methods were removed. They are
replaced with auto-generated setters when the task is accessed from a build script, but that
won’t be the case from plugins and other code outside of the build script.

The Maven Publish Plugin now produces more complete maven-metadata.xml files, including
maintaining a list of <snapshotVersion> elements. Some older versions of Maven may not be able
to consume this metadata.

HttpBuildCache no longer follows redirects.
The Depend task type has been removed.

Project.file(Object) no longer normalizes case for file paths on case-insensitive file systems. It
now ignores case in such circumstances and does not touch the file system.

ListProperty no longer extends Property.

Upgrading from 4.3 and earlier

Potential breaking changes

AbstractTestTask is now extended by non-JVM test tasks as well as Test. Plugins should beware
configuring all tasks of type AbstractTestTask because of this.

The default output location for EclipseClasspath.defaultOutputDir has changed from
$projectDir/bin to $projectDir/bin/default.

The deprecated InstallExecutable.setDestinationDir(Provider) was removed — use
InstallExecutable.installDirectory instead.

The deprecated InstallExecutable.setExecutable(Provider) was removed — use
InstallExecutable.executableFile instead.

Gradle will no longer prefer a version of Visual Studio found on the path over other locations. It

is now a last resort.

You can bypass the toolchain discovery by specifying the installation directory of the version of
Visual Studio you want via VisualCpp.setInstallDir(Object).

pluginManagement.repositories is now of type RepositoryHandler rather than
PluginRepositoriesSpec, which has been removed.

5xx HTTP errors during dependency resolution will now trigger exceptions in the build.

The embedded Apache Ant has been upgraded from 1.9.6 to 1.9.9.

Several third-party libraries used by Gradle have been upgraded to fix security issues.

Upgrading from 4.2 and earlier

The plugins {} block can now be used in subprojects and for plugins in the buildSrc directory.

https://docs.gradle.org/6.7.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/provider/ListProperty.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.tasks.testing.AbstractTestTask.html
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/6.7.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html#org.gradle.plugins.ide.eclipse.model.EclipseClasspath:defaultOutputDir
https://docs.gradle.org/6.7.1/dsl/org.gradle.nativeplatform.tasks.InstallExecutable.html#org.gradle.nativeplatform.tasks.InstallExecutable:installDirectory
https://docs.gradle.org/6.7.1/dsl/org.gradle.nativeplatform.tasks.InstallExecutable.html#org.gradle.nativeplatform.tasks.InstallExecutable:executableFile
https://docs.gradle.org/6.7.1/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html#org.gradle.nativeplatform.toolchain.VisualCpp:installDir
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Other deprecations

* You should no longer run Gradle versions older than 2.6 via the Tooling API.
* You should no longer run any version of Gradle via an older version of the Tooling API than 3.0.

* You should no longer chain TaskInputs.property(String,Object) and TaskInputs.properties(Map)
methods.

Potential breaking changes

* DefaultTask.newOutputDirectory() now returns a DirectoryProperty instead of a DirectoryVar.
* DefaultTask.newOutputFile() now returns a ReqularFileProperty instead of a ReqularFileVar.

* DefaultTask.newInputFile() now returns a ReqularFileProperty instead of a ReqularFileVar.

* ProjectLayout.buildDirectory now returns a DirectoryProperty instead of a DirectoryVar.

» AbstractNativeCompileTask.compilerArgs is now of type ListProperty<String> instead of
List<String>.

» AbstractNativeCompileTask.objectFileDir is now of type DirectoryProperty instead of File.

» AbstractLinkTask.linkerArgs is now of type ListProperty<String> instead of List<String>.

» TaskDestroyables.getFiles() is no longer part of the public APIL

* Overlapping version ranges for a dependency now result in Gradle picking a version that

satisfies all declared ranges.

For example, if a dependency on some-module is found with a version range of [3,6] and also
transitively with a range of [4,8], Gradle now selects version 6 instead of 8. The prior behavior
was to select 8.

* The order of elements in Iterable properties marked with either @OutputFiles or
@OutputDirectories now matters. If the order changes, the property is no longer considered up
to date.

Prefer using separate properties with @0utputFile/@OutputDirectory annotations or use Map
properties with @0utputFiles/@OutputDirectories instead.

* Gradle will no longer ignore dependency resolution errors from a repository when there is
another repository it can check. Dependency resolution will fail instead. This results in more
deterministic behavior with respect to resolution results.

Upgrading from 4.1 and earlier

Potential breaking changes

e The withPathSensitivity() methods on TaskFilePropertyBuilder and
TaskOutputFilePropertyBuilder have been removed.
* The bundled bndlib has been upgraded from 3.2.0 to 3.4.0.

* The FindBugs Plugin no longer renders progress information from its analysis. If you rely on
that output in any way, you can enable it with FindBugs.showProgress.

https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskInputs.html#property-java.lang.String-java.lang.Object-
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskInputs.html#properties-java.util.Map-
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/DefaultTask.html#newOutputDirectory--
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/DefaultTask.html#newOutputFile--
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/DefaultTask.html#newInputFile--
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/file/ProjectLayout.html#getBuildDirectory--
https://docs.gradle.org/6.7.1/dsl/org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask.html#org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask:compilerArgs
https://docs.gradle.org/6.7.1/dsl/org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask.html#org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask:objectFileDir
https://docs.gradle.org/6.7.1/dsl/org.gradle.nativeplatform.tasks.AbstractLinkTask.html#org.gradle.nativeplatform.tasks.AbstractLinkTask:linkerArgs
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskFilePropertyBuilder.html
https://docs.gradle.org/6.7.1/javadoc/org/gradle/api/tasks/TaskOutputFilePropertyBuilder.html

Upgrading from 4.0

* Consider using the new Worker API to enable units of work within your build to run in parallel.

Deprecated classes, methods and properties

Follow the API links to learn how to deal with these deprecations (if no extra information is
provided here):

e Nullable

Potential breaking changes

* Non-Java projects that have a project dependency on a Java project now consume the
runtimeElements configuration by default instead of the default configuration.

To override this behavior, you can explicitly declare the configuration to use in the project
dependency. For example: project(path: ':myJavaProject', configuration: 'default').

* Default Zinc compiler upgraded from 0.3.13 to 0.3.15.

* [Kotlin DSL] Base package renamed from org.gradle.script.lang.kotlin to
org.gradle.kotlin.dsl.

Changes in detail

[5.0] Default memory settings changed

The command line client now starts with 64MB of heap instead of 1GB. This may affect builds
running directly inside the client VM using --no-daemon mode. We discourage the use of --no-daemon,
but if you must use it, you can increase the available memory using the GRADLE_OPTS environment
variable.

The Gradle daemon now starts with 512MB of heap instead of 1GB. Large projects may have to
increase this setting using the org.gradle.jvmargs property.

All workers, including compilers and test executors, now start with 512MB of heap. The previous
default was 1/4th of physical memory. Large projects may have to increase this setting on the
relevant tasks, e.g. JavaCompile or Test.

[5.0] New default versions for code quality plugins

The default tool versions of the following code quality plugins have been updated:

The Checkstyle Plugin now uses 8.12 instead of 6.19 by default.

The CodeNarc Plugin now uses 1.2.1 instead of 1.1 by default.

The JaCoCo Plugin now uses 0.8.2 instead of 0.8.1 by default.

The PMD Plugin now uses 6.8.0 instead of 5.6.1 by default.

In addition, the default ruleset was changed from the now deprecated java-basic to

https://docs.gradle.org/4.10.3/javadoc/org/gradle/api/Nullable.html
https://docs.gradle.org/6.7.1/dsl/org.gradle.api.tasks.testing.Test.html
http://checkstyle.sourceforge.net
http://checkstyle.sourceforge.net/releasenotes.html#Release_8.12
http://codenarc.sourceforge.net
https://github.com/CodeNarc/CodeNarc/blob/master/CHANGELOG.md#version-121-aug-2018
https://www.jacoco.org/jacoco/
https://www.jacoco.org/jacoco/trunk/doc/changes.html
https://pmd.github.io/
https://pmd.github.io/pmd-6.8.0/pmd_release_notes.html#30-september-2018---680

category/java/errorprone.xml.

We recommend configuring a ruleset explicitly, though.

[5.0] Library upgrades

Several libraries that are used by Gradle have been upgraded:

* Groovy was upgraded from 2.4.15 to 2.5.4.
* Ant has been upgraded from 1.9.11 to 1.9.13.

» The AWS SDK used to access S3-backed Maven/Ivy repositories has been upgraded from 1.11.267
to 1.11.407.

* The BND library used by the OSGi Plugin has been upgraded from 3.4.0 to 4.0.0.

* The Google Cloud Storage JSON API Client Library used to access Google Cloud Storage backed
Maven/Ivy repositories has been upgraded from v1-rev116-1.23.0 to v1-rev136-1.25.0.

* Ivy has been upgraded from 2.2.0 to 2.3.0.
* The JUnit Platform libraries used by the Test task have been upgraded from 1.0.3 to 1.3.1.

* The Maven Wagon libraries used to access Maven repositories have been upgraded from 2.4 to
3.0.0.

» SLF4] has been upgraded from 1.7.16 to 1.7.25.

[5.0] Improved support for dependency and version constraints

Through the Gradle 4.x release stream, new @Incubating features were added to the dependency
resolution engine. These include sophisticated version constraints (prefer, strictly, reject),
dependency constraints, and platform dependencies.

If you have been using the IMPROVED_POM_SUPPORT feature preview, playing with constraints or prefer,
reject and other specific version indications, then make sure to take a good look at your
dependency resolution results.

[5.0] BOM import

Gradle now provides support for importing bill of materials (BOM) files, which are effectively POM
files that use <dependencyManagement> sections to control the versions of direct and transitive
dependencies. All you need to do is declare the POM as a platform dependency.

The following example picks the versions of the gson and dom4j dependencies from the declared
Spring Boot BOM:

https://groovy-lang.org/releasenotes/groovy-2.5.html
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.9.13.html
https://github.com/aws/aws-sdk-java/blob/master/CHANGELOG.md#111407-2018-09-11
https://github.com/bndtools/bnd/wiki/Changes-in-4.0.0
http://ant.apache.org/ivy/history/2.3.0/release-notes.html
https://www.slf4j.org/news.html

dependencies {

// import a BOM

implementation platform('org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE")

// define dependencies without versions
implementation 'com.google.code.gson:gson'
implementation 'dom4j:dom4;j’

[5.0] Separation of compile and runtime dependencies when consuming POMs

Since Gradle 1.0, runtime-scoped dependencies have been included in the Java compilation
classpath, which has some drawbacks:

* The compilation classpath is much larger than it needs to be, slowing down compilation.

* The compilation classpath includes runtime-scoped files that do not impact compilation,
resulting in unnecessary re-compilation when those files change.

With this new behavior, the Java and Java Library plugins both honor the separation of compile
and runtime scopes. This means that the compilation classpath only includes compile-scoped
dependencies, while the runtime classpath adds the runtime-scoped dependencies as well. This is
particularly useful if you develop and publish Java libraries with Gradle where the separation
between api and implementation dependencies is reflected in the published scopes.

[5.0] Changes to property factory methods on DefaultTask

Property factory methods on DefaultTask are now final

The property factory methods such as newInputFile() are intended to be called from the constructor
of a type that extends DefaultTask. These methods are now final to avoid subclasses overriding
these methods and using state that is not initialized.

Inputs and outputs are not automatically registered

The Property instances that are returned by these methods are no longer automatically registered
as inputs or outputs of the task. The Property instances need to be declared as inputs or outputs in
the usual ways, such as attaching annotations such as @0utputFile or using the runtime API to
register the property.

For example, you could previously use the following syntax and have both outputFile instances
registered as declared outputs:

build.gradle

class MyTask extends DefaultTask {
// note: no annotation here
final ReqularFileProperty outputFile = newOutputFile()

}

task myOtherTask {
def outputFile = newOutputFile()
dolast { ... }

build.gradle.kts

open class MyTask : DefaultTask() {
// note: no annotation here
val outputFile: ReqularFileProperty = newOutputFile()

}
task("myOtherTask") {

val outputFile = newOutputFile()
dolLast { ... }

Now you have to explicitly register outputFile, like this:

build.gradle

class MyTask extends DefaultTask {
// property needs an annotation
final ReqularFileProperty outputFile = project.objects.fileProperty()

}

task myOtherTask {
def outputFile = project.objects.fileProperty()
outputs.file(outputFile) // or to be registered using the runtime API
doLast { ... }

build.gradle.kts

open class MyTask : DefaultTask() {
@OutputFile // property needs an annotation
val outputFile: ReqularFileProperty = project.objects.fileProperty()

}

task("myOtherTask") {
val outputFile = project.objects.fileProperty()
outputs.file(outputFile) // or to be registered using the runtime API
dolLast { ... }

[5.0] Gradle now bundles JAXB for Java 9 and above

In order to use S3 backed artifact repositories, you previously had to add --add-modules
java.xml.bind to org.gradle.jvmargs when running on Java 9 and above.

Since Java 11 no longer contains the java.xml.bind module, Gradle now bundles JAXB 2.3.1
(com.sun.xml.bind:jaxb-impl) and uses it on Java 9 and above.

Please remove the --add-modules java.xml.bind option from org.gradle.jvmargs, if set.

[5.0] The gradlePluginPortal() repository no longer looks for JARs without a POM by default

With this new behavior, if a plugin or a transitive dependency of a plugin found in the
gradlePluginPortal() repository has no Maven POM it will fail to resolve.

Artifacts published to a Maven repository without a POM should be fixed. If you encounter such
artifacts, please ask the plugin or library author to publish a new version with proper metadata.

If you are stuck with a bad plugin, you can work around by re-enabling JARs as metadata source for

the gradlePluginPortal() repository:

settings.gradle

pluginManagement {
repositories {
gradlePluginPortal().tap {
metadataSources {
mavenPom()
artifact()

settings.gradle.kts

pluginManagement {
repositories {
gradlePluginPortal().apply {
(this as MavenArtifactRepository).metadataSources {
mavenPom()
artifact()

Java Library Distribution Plugin utilizes Java Library Plugin

The Java Library Distribution Plugin is now based on the Java Library Plugin instead of the Java
Plugin.

Additionally, the default distribution created by the plugin will contain all artifacts of the
runtimeClasspath configuration instead of the deprecated runtime configuration.

Configuration Avoidance API disallows common configuration errors

The configuration avoidance API introduced in Gradle 4.9 allows you to avoid creating and
configuring tasks that are never used.

With the existing API, this example adds two tasks (foo and bar):

task_configuration_avoidance.pdf

build.gradle

tasks.create("foo") {
tasks.create("bar")

build.gradle.kts

tasks.create("foo") {
tasks.create("bar")

When converting this to use the new API, something surprising happens: bar doesn’t exist. The new
API only executes configuration actions when necessary, so the register() for task bar only
executes when foo is configured.

build.gradle

tasks.register("foo") {
tasks.register("bar") // WRONG

}

build.gradle.kts

tasks.register("foo") {
tasks.register("bar") // WRONG
}

To avoid this, Gradle now detects this and prevents modification to the underlying container
(through create() or register()) when using the new API.

[5.0] Worker API: working directory of a worker can no longer be set

Since JDK 11 no longer supports changing the working directory of a running process, setting the
working directory of a worker via its fork options is now prohibited.

All workers now use the same working directory to enable reuse.

Please pass files and directories as arguments instead.

[4.10] Publishing to AWS S3 requires new permissions

The S3 repository transport protocol allows Gradle to publish artifacts to AWS S3 buckets. Starting
with this release, every artifact uploaded to an S3 bucket will be equipped with the bucket-owner-
full-control canned ACL. Make sure that the AWS account used to publish artifacts has the
s3:PutObjectAcl and s3:PutObjectVersionAcl permissions, otherwise the upload will fail.

{
"Version":"2012-10-17",
"Statement":[
/] ...
{
"Effect":"Allow",
"Action":[
"s3:PutObject", // necessary for uploading objects
"s3:PutObjectAcl", // required starting with this release
"s3:PutObjectVersionAcl" // if S3 bucket versioning is enabled
1
"Resource":"arn:aws:s3:::myCompanyBucket/*"
}
]
}

See AWS S3 Cross Account Access for more information.

[4.9] Consider trying the lazy API for task creation and configuration

Gradle 4.9 introduced a new way to create and configure tasks that works lazily. When you use this
approach for tasks that are expensive to configure, or when you have many, many tasks, your build
configuration time can drop significantly when those tasks don’t run.

You can learn more about lazily creating tasks in the Task Configuration Avoidance chapter. You
can also read about the background to this new feature in this blog post.

[4.8] Switch to the Maven Publish and Ivy Publish Plugins

Now that the publishing plugins are stable, we recommend that you migrate from the legacy
publishing mechanism for standard Java projects, i.e. those based on the Java Plugin. That includes
projects that use any one of: Java Library Plugin, Application Plugin or War Plugin.

To use the new approach, simply replace any upload<Conf> configuration with a publishing {} block.
See the publishing overview chapter for more information.

[4.8] Use deferred configuration for publishing plugins

Prior to Gradle 4.8, the publishing {} block was implicitly treated as if all the logic inside it was
executed after the project was evaluated. This was confusing, because it was the only block that
behaved that way. As part of the stabilization effort in Gradle 4.8, we are deprecating this behavior
and asking all users to migrate their build.

task_configuration_avoidance.pdf#task_configuration_avoidance
https://blog.gradle.org/preview-avoiding-task-configuration-time
artifact_management.pdf#artifact_management
artifact_management.pdf#artifact_management

The new, stable behavior can be switched on by adding the following to your settings file:

settings.gradle

enableFeaturePreview('STABLE PUBLISHING')

settings.gradle.kts

enableFeaturePreview("STABLE _PUBLISHING")

We recommend doing a test run with a local repository to see whether all artifacts still have the
expected coordinates. In most cases everything should work as before and you are done. However,
your publishing block may rely on the implicit deferred configuration, particularly if it relies on
values that may change during the configuration phase of the build.

For example, under the new behavior, the following logic assumes that jar.archiveBaseName doesn’t
change after artifactId is set:

build.gradle

subprojects {
publishing {
publications {
mavenJava {
from components.java
artifactId = jar.archiveBaseName

build.gradle.kts

subprojects {
publishing {
publications {
named<MavenPublication>("mavenlava") {
from(components["java"])
artifactId = tasks.jar.get().archiveBaseName.get()

If that assumption is incorrect or might possibly be incorrect in the future, the artifactId must be
set within an afterEvaluate {} block, like so:

build.gradle

subprojects {
publishing {
publications {
mavenJava {
from components.java
afterEvaluate {
artifactId = jar.archiveBaseName

}

build.gradle.kts

subprojects {
publishing {
publications {
named<MavenPublication>("mavenJava") {
from(components["java"])
afterEvaluate {
artifactId = tasks.jar.get().archiveBbaseName.get()

}

[4.8] Configure existing wrapper and init tasks

You should no longer define your own wrapper and init tasks. Configure the existing tasks instead,
for example by converting this:

build.gradle
task wrapper(type: Wrapper) {

}

build.gradle.kts

task<Wrapper>("wrapper") {

}

to this:

build.gradle

wrapper {

}

build.gradle.kts

tasks.wrapper {

}

[4.8] Gradle now honors implicit wildcards in Maven POM exclusions

If an exclusion in a Maven POM was missing either a groupId or artifactId, Gradle used to ignore
the exclusion. Now the missing elements are treated as implicit wildcards —e.g.
<groupld>*</groupId> — which means that some of your dependencies may now be excluded where
they weren’t before.

You will need to explicitly declare any missing dependencies that you need.

[4.7] Changes to the structure of Gradle’s plain console output

The plain console mode now formats output consistently with the rich console, which means that
the output format has changed. For example:

* The output produced by a given task is now grouped together, even when other tasks execute in
parallel with it.

» Task execution headers are printed with a "> Task" prefix.

* All output produced during build execution is written to the standard output file handle. This
includes messages written to System.err unless you are redirecting standard error to a file or
any other non-console destination.

This may break tools that scrape details from the plain console output.

[4.6] Changes to the APIs of native tasks related to compilation, linking and installation

Many tasks related to compiling, linking and installing native libraries and applications have been
converted to the Provider API so that they support lazy configuration. This conversion has
introduced some breaking changes to the APIs of the tasks so that they match the conventions of
the Provider API.

The following tasks have been changed:

AbstractLinkTask and its subclasses

» getDestinationDir() was replaced by getDestinationDirectory().

» getBinaryFile(), getOutputFile() was replaced by getLinkedFile().

» setOutputFile(File) was removed. Use Property.set() instead.

e setOutputFile(Provider) was removed. Use Property.set() instead.

» getTargetPlatform() was changed to return a Property.

» setTargetPlatform(NativePlatform) was removed. Use Property.set() instead.
* getToolChain() was changed to return a Property.

e setToolChain(NativeToolChain) was removed. Use Property.set() instead.

CreateStaticLibrary

» getOutputFile() was changed to return a Property.

» setOutputFile(File)